【算法讲4:乘性函数(上)】欧拉函数 | 因子和函数 | 因子个数函数

  • 内容出自:《初等数论及其应用》第六版第七章

续集

一些定义 / 定理

  • 算数函数:定义在所有正整数上的函数
  • 乘性函数(或积性函数):如果算数函数 f f f任意两个互素的正整数 m 、 n m、n mn,均有 f ( m n ) = f ( m ) f ( n ) f(mn)=f(m)f(n) f(mn)=f(m)f(n)
  • 完全乘性函数(或完全积性函数):如果算数函数 f f f任意两个正整数 m 、 n m、n mn,均有 f ( m n ) = f ( m ) f ( n ) f(mn)=f(m)f(n) f(mn)=f(m)f(n)
  • 如果 f f f 是一个乘性函数,对任意正整数有素幂因子分解 n = p 1 a 1 p 2 a 2 ⋯ p s a s n=p_1^{a_1}p_2^{a_2}\cdots p_s^{a_s} n=p1a1p2a2psas
    那么 f ( n ) = f ( p 1 a 1 ) f ( p 2 a 2 ) ⋯ f ( p s a s ) f(n)=f(p_1^{a_1})f(p_2^{a_2})\cdots f(p_s^{a_s}) f(n)=f(p1a1)f(p2a2)f(psas)
  • 和函数:如果 f f f 是个算数函数,它的和函数为 F F F ,那么 F ( n ) = ∑ d ∣ n f ( d ) F(n)=\underset{d|n}{\sum}f(d) F(n)=dnf(d)

欧拉 ϕ \phi ϕ 函数

  • 定理1:如果 p p p 是素数,那么 ϕ ( p ) = p − 1 \phi(p)=p-1 ϕ(p)=p1
    反之,如果 p p p 是正整数且 ϕ ( p ) = p − 1 \phi(p)=p-1 ϕ(p)=p1,那么 p p p 是素数。
  • 定理2:设 p p p 是素数, a a a 是一个正整数,那么 ϕ ( p a ) = p a − p a − 1 \phi(p^a)=p^a-p^{a-1} ϕ(pa)=papa1
    证明:不超过 p a p^a pa 且和 p a p^a pa 不互素的数都可以写成 k p kp kp 的形式,其中 1 ≤ k ≤ p a − 1 1\le k\le p^{a-1} 1kpa1,故有 p a − 1 p^{a-1} pa1 个这样的数。
  • ϕ \phi ϕ 是乘性函数,即若 m 、 n m、n mn 互素,那么 ϕ ( m n ) = ϕ ( m ) ϕ ( n ) \phi(mn)=\phi(m)\phi(n) ϕ(mn)=ϕ(m)ϕ(n)
    证明:用如下方式列出 1 ∼ m n 1\sim mn 1mn 的所有正整数:
    1 m + 1 2 m + 1 ⋯ ( n − 1 ) m + 1 2 m + 2 2 m + 2 ⋯ ( n − 1 ) m + 2 3 m + 3 2 m + 3 ⋯ ( n − 1 ) m + 3 ⋮ ⋮ ⋮ ⋮ r m + r 2 m + r ⋯ ( n − 1 ) m + r ⋮ ⋮ ⋮ ⋮ m 2 m 3 m ⋯ n m \begin{matrix} 1&m+1&2m+1&\cdots&(n-1)m+1\\ 2&m+2&2m+2&\cdots&(n-1)m+2\\ 3&m+3&2m+3&\cdots&(n-1)m+3\\ \vdots&\vdots&\vdots&&\vdots\\ r&m+r&2m+r&\cdots&(n-1)m+r\\ \vdots&\vdots&\vdots&&\vdots\\ m&2m&3m&\cdots&nm\\ \end{matrix} 123rmm+1m+2m+3m+r2m2m+12m+22m+32m+r3m(n1)m+1(n1)m+2(n1)m+3(n1)m+rnm
    (1)现在假设 r r r 是不超过 m m m 的正整数,且 gcd ⁡ ( m , r ) = d > 1 \gcd(m,r)=d>1 gcd(m,r)=d>1,那么第 r r r 行中没有与 m n mn mn 互素的元素。
    (2)因此,我们只需要考虑满足 gcd ⁡ ( m , r ) = 1 \gcd(m,r)=1 gcd(m,r)=1 的第 r r r 行,该行里有多少个元素和 m n mn mn 互素。首先,这里面每一个元素都和 m m m 互素。
    (3)因为每一行 n n n 个整数形成模 n n n 的完全剩余系,故这里面有 ϕ ( n ) \phi(n) ϕ(n) 个与 n n n 互素的整数。
    (4) ϕ ( m ) \phi(m) ϕ(m) 行,每行 ϕ ( n ) \phi(n) ϕ(n) 个元素与 m n mn mn 互素,故 ϕ ( m n ) = ϕ ( m ) ϕ ( n ) \phi(mn)=\phi(m)\phi(n) ϕ(mn)=ϕ(m)ϕ(n)
  • 定理3:设 n = p 1 a 1 p 2 a 2 ⋯ p s a s n=p_1^{a_1}p_2^{a_2}\cdots p_s^{a_s} n=p1a1p2a2psas 为 正整数 n n n 的素幂因子分解,那么:
    ϕ ( n ) = n ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) ⋯ ( 1 − 1 p s ) \phi(n)=n(1-\frac{1}{p_1})(1-\frac{1}{p_2})\cdots(1-\frac{1}{p_s}) ϕ(n)=n(1p11)(1p21)(1ps1)
    证明:因为 ϕ \phi ϕ 是乘性函数,故 ϕ ( n ) = ϕ ( p 1 a 1 ) ϕ ( p 2 a 2 ) ⋯ ϕ ( p s a s ) \phi(n)=\phi(p_1^{a_1})\phi(p_2^{a_2})\cdots\phi(p_s^{a_s}) ϕ(n)=ϕ(p1a1)ϕ(p2a2)ϕ(psas)
    由定理2,我们得到 ϕ ( p i a i ) = p i a i − p i a i − 1 = p i a i ( 1 − 1 p i ) \phi(p_i^{a_i})=p_i^{a_i}-p_i^{a_i-1}=p_i^{a_i}(1-\frac{1}{p_i}) ϕ(piai)=piaipiai1=piai(1pi1)
    ϕ ( n ) = p 1 a 1 ( 1 − 1 p 1 ) p 2 a 2 ( 1 − 1 p 2 ) ⋯ p s a s ( 1 − 1 p s ) = n ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) ⋯ ( 1 − 1 p s ) \begin{aligned}\phi(n)&=p_1^{a_1}(1-\frac{1}{p_1})p_2^{a_2}(1-\frac{1}{p_2})\cdots p_s^{a_s}(1-\frac{1}{p_s})\\&=n(1-\frac{1}{p_1})(1-\frac{1}{p_2})\cdots(1-\frac{1}{p_s})\end{aligned} ϕ(n)=p1a1(1p11)p2a2(1p21)psas(1ps1)=n(1p11)(1p21)(1ps1)
  • 定理4:除了 n = 2 n=2 n=2 时, ϕ ( n ) \phi(n) ϕ(n) 都是偶数。
    证明:首先 ϕ ( n ) = ∏ ϕ ( p i a i ) \phi(n)=\prod\phi(p_i^{a_i}) ϕ(n)=ϕ(piai)
    (1)当 n > 2 n>2 n>2 时,若含有至少一个奇素数 p i p_i pi ,则 ϕ ( p i a i ) = p i a i − 1 ( p i − 1 ) \phi(p_i^{a_i})=p_i^{a_i-1}(p_i-1) ϕ(piai)=piai1(pi1) 是一个偶数,故此时 ϕ ( n ) \phi(n) ϕ(n) 是一个偶数;。
    (2)当 n > 2 n>2 n>2 时,且不含有任何奇素数,故 n = 2 a 1 n=2^{a_1} n=2a1,此时 ϕ ( n ) = 2 a 1 − 1 ( 2 − 1 ) = 2 a 1 − 1 \phi(n)=2^{a_1-1}(2-1)=2^{a_1-1} ϕ(n)=2a11(21)=2a11,因为 a 1 − 1 > 1 a_1-1>1 a11>1 ϕ ( n ) \phi(n) ϕ(n) 是一个偶数。
  • 定理5:设 n n n 是正整数,那么 ∑ d ∣ n ϕ ( d ) = n \underset{d|n}{\sum}\phi(d)=n dnϕ(d)=n
    证明:我们将 1 ∼ n 1\sim n 1n 的整数构成的集合进行分类。 m m m 属于类 C d C_d Cd 表示 gcd ⁡ ( n , m ) = d \gcd(n,m)=d gcd(n,m)=d
    等价的表述: m m m 属于类 C d C_d Cd 表示 gcd ⁡ ( n d , m d ) = 1 \gcd(\frac{n}{d},\frac{m}{d})=1 gcd(dn,dm)=1
    所以, C d C_d Cd 类中所含整数的个数是所有不超过 n d \frac{n}{d} dn 且和 n d \frac{n}{d} dn 互素的正整数的个数。
    所以 C d C_d Cd 类中存在 ϕ ( n d ) \phi(\frac{n}{d}) ϕ(dn) 个整数。
    因为每个数只能存在在一个类里面,故 n = ∑ d ∣ n ϕ ( n d ) = ∑ d ∣ n ϕ ( d ) n=\underset{d|n}{\sum}\phi(\frac{n}{d})=\underset{d|n}{\sum}\phi(d) n=dnϕ(dn)=dnϕ(d)

因子和与因子个数

  • 因子和函数 σ \sigma σ 定义为整数 n n n 的所有正因子之和,记为 σ ( n ) \sigma(n) σ(n)
    因子个数函数 τ \tau τ 定义为正整数 n n n 的所有正因子的个数,记为 τ ( n ) \tau(n) τ(n)
    容易看到, σ ( n ) = ∑ d ∣ n d \sigma(n)=\underset{d|n}{\sum}d σ(n)=dnd,还有 τ ( n ) = ∑ d ∣ n 1 \tau(n)=\underset{d|n}{\sum}1 τ(n)=dn1
  • 定理1:如果 f f f 是乘性函数,那么其和函数 F F F 也是乘性函数,
    即若 m 、 n m、n mn互素,则 F ( m n ) = F ( m ) F ( n ) F(mn)=F(m)F(n) F(mn)=F(m)F(n)
    证明:
    (1)首先假设 gcd ⁡ ( m , n ) = 1 \gcd(m,n)=1 gcd(m,n)=1,有 F ( m n ) = ∑ d ∣ m n f ( d ) F(mn)=\underset{d|mn}{\sum}f(d) F(mn)=dmnf(d)
    (2)因为 gcd ⁡ ( m , n ) = 1 \gcd(m,n)=1 gcd(m,n)=1,故每个 m n mn mn 的因子可以唯一地写成 m m m 的因子 d 1 d_1 d1 n n n 的因子 d 2 d_2 d2 的积,且这两个因子互素,即 d = d 1 d 2 d=d_1d_2 d=d1d2,所以有:
    F ( m n ) = ∑ d 1 ∣ m d 2 ∣ n f ( d 1 d 2 ) = ∑ d 1 ∣ m d 2 ∣ n f ( d 1 ) f ( d 2 ) = ∑ d 1 ∣ m f ( d 1 ) ∑ d 2 ∣ n f ( d 2 ) = F ( m ) F ( n ) F(mn)=\underset{\underset{d_2|n}{d_1|m}}{\sum}f(d_1d_2)=\underset{\underset{d_2|n}{d_1|m}}{\sum}f(d_1)f(d_2)=\underset{d_1|m}{\sum}f(d_1)\underset{d_2|n}{\sum}f(d_2)=F(m)F(n) F(mn)=d2nd1mf(d1d2)=d2nd1mf(d1)f(d2)=d1mf(d1)d2nf(d2)=F(m)F(n)
  • 推论1: σ \sigma σ τ \tau τ 函数是乘性函数。
    证明:
    (1)设 f ( n ) = n f(n)=n f(n)=n g ( n ) = 1 g(n)=1 g(n)=1,易得该俩函数是乘性函数。
    (2)由定理1得到 σ ( n ) = ∑ d ∣ n f ( d ) \sigma(n)=\underset{d|n}{\sum}f(d) σ(n)=dnf(d) τ ( n ) = ∑ d ∣ n g ( d ) \tau(n)=\underset{d|n}{\sum}g(d) τ(n)=dng(d) 是乘性的。
  • 引理1:设 p p p 是一个素数, a a a 是一个正整数,那么 σ ( p a ) = 1 + p + p 2 + ⋯ + p a = p a + 1 − 1 p − 1 \sigma(p^a)=1+p+p^2+\cdots+p^a=\frac{p^{a+1}-1}{p-1} σ(pa)=1+p+p2++pa=p1pa+11
    τ ( p a ) = a + 1 \tau(p^a)=a+1 τ(pa)=a+1
  • 定理2:根据定理1,推论1和引理1,得到 n = p 1 a 1 p 2 a 2 ⋯ p s a s n=p_1^{a_1}p_2^{a_2}\cdots p_s^{a_s} n=p1a1p2a2psas 的素幂因子分解,则
    σ ( n ) = ∏ p i a i + 1 − 1 p i − 1 \sigma(n)=\prod \frac{p_i^{a_i+1}-1}{p_i-1} σ(n)=pi1piai+11
    τ ( n ) = ∏ ( a i + 1 ) \tau(n)=\prod(a_i+1) τ(n)=(ai+1)
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值