图像视频检索: faiss: Billion-scale similarity search with GPUs

faiss: Billion-scale similarity search with GPUs 
paper 
https://arxiv.org/abs/1702.08734
github  https://github.com/facebookresearch/faiss

摘要:
【提出问题】
特种数据库系统中的相似度搜索应用程序处理诸如图像或视频之类的复杂数据,这些数据通常由
高维特征表示并且需要特殊的索引结构。本文解决相似度搜索更好利用GPU的问题尽管GPU
擅长数据并行任务,但先前的方法遇到算法瓶颈:暴露出较少的并行性(例k-min selection),
或不能充分利用内存的层次结构。
【解决方案】
我们提出了一种用于k-selection的设计。其运行性能最高可达理论峰值55%,使得近似最近邻
ANN(approximate nearest neighbor)实现比现有GPU SOTA快8.5倍。通过提出brute-force
优化设计,基于乘积量化(PQ)的近似和压缩域搜索,我们尝试应用于不同的相似性搜索场景。
在所有这些设置中,我们都大大超越了现有SOTA技术。我们的实现可在35分钟内,Yfcc100M
数据集的9500万张图像上构建高精度k-NN图,利用4个Titan XGPU卡,在不到12小时的时间
内连接10亿个矢量的图。为了比较和复现,我们已经开源了方法。

1.引论

本文做出了以下贡献:  
GPU k-selection,在快速寄存器存储器中运行,足够的灵活性可以融合其他内核,为此我们提供了
复杂性分析;  用于在GPU上进行精确和近似k-nearest neighbor查找的近优算法布局;实验表明,
在单或多GPU配置中,这些改进在中型到大型的最近邻居搜索任务上性能大幅超越历史最好。 

本文的结构如下。第2节介绍了上下文和符号。第3节回顾了GPU体系结构,讨论了将其用于相似性
搜索时出现的问题。第4节介绍了我们的主要贡献之一,即我们针对GPU的k-selection,而第5节则
提供了有关算法计算布局的细节。最后,第6节为我们的方法提供了广泛的实验,与SOTA技术进行
了比较,并展示了图像集合的具体用例。

===================================

源代码实现/原理解释: https://github.com/facebookresearch/faiss/wiki
Faiss是一个用于高效相似性搜索和稠密向量聚类的库。 它包含的算法可搜索任意大小的向量集,
直至放不到RAM的向量。 它还包含用于评估和参数调整的支持代码。 Faiss用C ++编写用Python封装。
一些最有用的算法是在GPU上实现的。 它是由Facebook AI Research开发的。
Faiss基本构建块: 聚类 clustering, 降维PCA, 乘积量化quantization
Faiss provides an efficient k-means implementation,Clustering on the GPU.
Computing a PCA,
PQ encoding / decoding.

A Survey of Product Quantization,2018,
https://www.jstage.jst.go.jp/article/mta/6/1/6_2/_pdf
Abstract
Product Quantization (PQ) search and derivatives are popular and successful methods for
large-scale approximated nearest neighbor(ANN) search. In this paper, we review the
fundamental algorithm of this class of algorithms and provide executable sample codes.
We then provide a comprehensive survey of the recent PQ-based methods.
-
-A relation of PQ-based methods
-

 

faiss-web-service , https://github.com/plippe/faiss-web-service
gRPC faiss-server,  https://github.com/ynqa/faiss-server

================================================================

faiss简介及示例  https://blog.csdn.net/kanbuqinghuanyizhang/article/details/80774609
Faiss 在项目中的使用 https://waltyou.github.io/Faiss-In-Project/
Facebook开源向量检索框架Faiss   https://zhuanlan.zhihu.com/p/266589272

图像检索:向量索引,, https://yongyuan.name/blog/vector-ann-search.html

 

youtube视频推荐系统
https://daiwk.github.io/posts/dl-youtube-video-recommendation.html

 

Billion-scale semantic similarity search with FAISS+SBERT

https://towardsdatascience.com/billion-scale-semantic-similarity-search-with-faiss-sbert-c845614962e2

【中译】https://www.yanxishe.com/TextTranslation/2987

Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks

https://arxiv.org/abs/1908.10084

 【中译】 https://blog.csdn.net/weixin_43922901/article/details/106014964

 

 

 

<think>好的,用户想了解以图搜图系统的实现方案和研究资料。我需要先整理一下已有的引用内容,看看有哪些信息可以利用。根据引用1和2,Milvus被提到作为相似性检索引擎,结合VGG模型提取特征,这可能是一个关键点。引用3提到iOS的实现,但看起来链接可能不太相关,不过可以简单提一下移动端的实现可能。 首先,用户需要的是实现方案,所以应该分步骤说明。可能需要包括图像特征提取、向量数据库、相似度匹配这几个部分。VGG模型在引用2中被详细提到,可以推荐作为特征提取的模型。另外,Milvus作为向量数据库,需要介绍它的作用,比如存储特征向量并进行快速检索。 然后,研究资料方面,可能需要列出相关的论文、开源项目和工具。比如VGG的论文,ResNet、CNN等其他模型,还有Milvus的文档,FAISS等替代方案。还要考虑用户可能需要实际操作的步骤,比如数据准备、系统架构、部署流程,这些在引用2中有分章节说明,可以总结出来。 用户可能对具体的技术细节感兴趣,比如特征提取的具体方法,如何将图片转换为向量,以及相似度计算的算法,比如欧氏距离或余弦相似度。另外,系统的优化方向,比如使用更高效的模型或分布式数据库,也是需要考虑的。 还要注意用户提到的“实现方案”和“研究资料”,可能需要分开两部分回答。确保结构清晰,步骤明确,参考资料足够全面。同时,根据引用3,移动端可能有不同的实现方式,可以简要提及,但主要焦点还是在基于Milvus和VGG的方案上,因为引用1和2详细描述了这一点。 最后,相关问题部分需要生成用户可能进一步询问的问题,比如特征提取模型的选择、系统的性能优化、实际应用案例等,这样能帮助用户深入探索。</think>### 以图搜图系统实现方案与研究资料 #### 一、系统实现核心步骤 1. **图像特征提取** - 使用深度学习模型(如$VGG$、$ResNet$)将图像映射为高维特征向量,例如$VGG16$输出$4096$维向量[^2] - 公式示例:图像$I$经模型$M$处理后得到特征向量$v = M(I)$ - 特征需满足相似图像向量距离近(如欧氏距离$d(v_1, v_2) = \sqrt{\sum(v_{1i} - v_{2i})^2}$) 2. **向量存储与索引** - 采用向量数据库(如$Milvus$、$FAISS$)对特征向量建立高效索引 - 支持近似最近邻($ANN$)算法,实现$O(\log N)$时间复杂度的检索[^2] 3. **相似度匹配** - 输入图像经特征提取后,与库中向量进行相似度计算 - 返回Top-K相似结果,支持余弦相似度$ \cos\theta = \frac{v_1 \cdot v_2}{|v_1||v_2|} $或欧氏距离排序 #### 二、典型架构示例 ```plaintext +-----------------+ | 图像输入 | +--------+--------+ ↓ +--------+--------+ | VGG特征提取模型 | → 生成4096维向量 +--------+--------+ ↓ +--------+--------+ | Milvus向量数据库 | → 存储+索引+检索 +--------+--------+ ↓ +--------+--------+ | 相似结果排序输出 | +-----------------+ ``` (基于Milvus和VGG的架构参考[^2]) #### 三、研究资料推荐 1. **关键技术论文** - 《Very Deep Convolutional Networks for Large-Scale Image Recognition》(VGG模型原论文) -Billion-scale similarity search with GPUs》(FAISS算法原理) 2. **开源工具与框架** - **Milvus**: 分布式向量数据库,支持GPU加速[^1][^2] - **OpenCV**: 图像预处理与特征工程工具 - **PyTorch/TensorFlow**: 特征提取模型训练框架 3. **实践案例参考** - Milvus官方以图搜图教程(含代码):https://milvus.io/docs - 图像检索系统优化方法(局部敏感哈希/量化编码) - 移动端实现方案(如iOS CoreML集成轻量模型)[^3] #### 四、性能优化方向 1. **特征提取加速** - 使用轻量化模型(如$MobileNet$)替代$VGG$ - 模型蒸馏技术压缩参数量 2. **检索效率提升** $$ \text{检索时间} \propto \frac{\text{数据量}}{\text{索引分片数}} + \text{GPU并行度} $$ - 分布式部署Milvus集群 - 采用混合索引(如IVF_PQ)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值