1.从二维到三维:旋转的复杂化
旋转是对应刚体的,刚体可以看作一个质点系,刚体中每两个质点之间相对距离不发生变化。
质点的运动用一个线速度即可描述,当刚体内质点运动具有不同线速度时,刚体发生了转动,描述刚体整体运动的参数是角速度和角加速度。
描述旋转最形象的实例是陀螺,可以看到,旋转发生时是有一个旋转轴的,旋转轴质点上线速度为0,其它质点速度v=w×r,注意这三个量是矢量,其中v w是自由矢量,r是固定矢量。注意,刚体运动的每一个瞬时都有一个旋转轴。
这样,刚体做平面运动中的旋转就很简单,因为其旋转轴只能垂直于运动平面,角速度和角加速度的方向确定了,这样角速度和角加速度从一个矢量退化为标量(准确的说,角速度和角加速度的方向有两个,一个是平面正面,一个是反面,但可以用正负号表示)。这是二维的情形。二维的旋转用复数和欧拉公式可以很好的描述。
但从二维到三维时,事情复杂了。为什么,因为旋转轴方向不固定了。所以刚体在三维内运动与二维动相比具有本质的区别。理解了这一点就可以进一步了解四元数了。
2 四元数:描述旋转本质的数学工具
根据