题目
给定一个表示分数加减运算的字符串 expression
,你需要返回一个字符串形式的计算结果。
这个结果应该是不可约分的分数,即最简分数。 如果最终结果是一个整数,例如 2
,你需要将它转换成分数形式,其分母为 1
。所以在上述例子中, 2
应该被转换为 2/1
。
示例 1:
输入: expression = "-1/2+1/2"
输出: "0/1"
示例 2:
输入: expression = "-1/2+1/2+1/3"
输出: "1/3"
示例 3:
输入: expression = "1/3-1/2"
输出: "-1/6"
提示:
- 输入和输出字符串只包含
'0'
到'9'
的数字,以及'/'
,'+'
和'-'
。 - 输入和输出分数格式均为
±分子/分母
。如果输入的第一个分数或者输出的分数是正数,则'+'
会被省略掉。 - 输入只包含合法的最简分数,每个分数的分子与分母的范围是 [1,10]。 如果分母是1,意味着这个分数实际上是一个整数。
- 输入的分数个数范围是 [1,10]。
- 最终结果的分子与分母保证是 32 位整数范围内的有效整数。
思路
- 遍历字符串,通过
=-
符号将字符串分隔为多个分数运算 - 分数运算的方式为:
- 将分数分隔成分子和分母,并转化为整数
- 通分为两个分母的积
- 进行运算
- 约分:分子和分母除以他们的最大公因数
代码
class Solution:
def fractionAddition(self, expression: str) -> str:
def calc(a: str, b: str, operator: str):
operands = a.split("/")
a1 = int(operands[0])
a2 = int(operands[1])
operands = b.split("/")
b1 = int(operands[0])
b2 = int(operands[1])
b3 = a2*b2
a3 = a1 * b2 + a2*b1 if operator == "+" else a1 * b2 - a2*b1
mod = math.gcd(a3,b3)
a3 //= mod
b3 //= mod
return F"{a3}/{b3}"
if expression[0] == "-": expression = "0/1"+expression
if len(expression) <3: return expression
i = 0
while i < len(expression) and expression[i] not in "+-": i += 1
ret = expression[:i]
while i < len(expression):
start = i
i+=1
while i < len(expression) and expression[i] not in "+-": i += 1
ret = calc(ret, expression[start+1:i], expression[start])
return ret
复杂度
- 时间复杂度: O ( n + log C ) O(n+\log C) O(n+logC)
- 空间复杂度: O ( 1 ) O(1) O(1)