简单数论总结

一、欧几里得定理

欧几里得定理主要可以解决 G C D GCD GCD问题,也就是所谓的最大公约数。基础思想就是所谓的『辗转相除』。就是两个数字不停地相互取模,最后当其中一个等于 0 0 0的时候另一个数字就是我们要求的 G C D GCD GCD了。

这个比较基础,直接上代码吧:

int gcd(int a, int b){
    if(b == 0) return a;
    else return gcd(b, a % b);
}

当然还有更短的版本:

int gcd(int a, int b){
	return b == 0 ? a : gcd(b, a % b);
}

知道了这个之后, L C M LCM LCM(最小公倍数)也就可以求了。两个数的最小公倍数就等于 a ∗ b / G C D ( a , b ) a * b / GCD(a, b) ab/GCD(a,b)。用c++来说的话就是:

int lcm(int a, int b){
	return a * b / gcd(a, b);
}

知道原理的话这个也就非常简单了。

二、扩展欧几里得

我们先来考虑二元一次方程。一般来说二元一次方程必须要两个式子才能求解。但如果我们只有一个式子呢??那我们求出来的就是一个解系。说人话的话就是会有很多解。我们用扩展欧几里得所求的是这么多解中的其中一个~~(任意一个)~~。

那么,如何做到呢??

各位客官请看,这里有一个式子:

a x + b y = G C D ( a , b ) ax + by = GCD(a, b) ax+by=GCD(a,b)

b x ′ + ( a % b ) y ′ = G C D ( a , b ) bx' + (a \% b)y' = GCD(a, b) bx+(a%b)y=GCD(a,b)

∵ a % b = a − a / b ∗ b ∵a \% b = a - a/b * b a%b=aa/bb

∴ b x ′ + ( a − a / b ∗ b ) y ′ = G C D ( a , b ) ∴bx' + (a - a/b * b)y' = GCD(a, b) bx+(aa/bb)y=GCD(a,b)

b x ′ + a y ′ − b ∗ a / b ∗ y ′ = G C D ( a , b ) bx' + ay' - b * a/b * y' = GCD(a, b) bx+ayba/by=GCD(a,b)

a y ′ + b ( x ′ − a / b ∗ y ′ ) = G C D ( a , b ) ay' + b(x' - a/b * y') = GCD(a, b) ay+b(xa/by)=GCD(a,b)

由上面的证明可知, x = y ′ x = y' x=y,y = x ′ − a / b ∗ y ′ x' - a/b * y' xa/by

那我们就一直递归下去,直到 b = 0 b = 0 b=0。然后呢?我们想, G C D ( a , b ) GCD(a, b) GCD(a,b) b = 0 b = 0 b=0时, G C D ( a , b ) = a GCD(a, b) = a GCD(a,b)=a,又原方程可得 a x = a ax = a ax=a,即 x = 1 x = 1 x=1

代码奉上:

int x, y;
void exgcd(int a, int b){
    if(b != 0){
        exgcd(b, a % b);
        int k = x;
        x = y;
        y = k - a/b * y;
    }
    else y = (x = 1) - 1;
}

一般来说会用传地址的方式实现,但我用的是全局变量。主要是因为 x x x y y y的值会不停地变,所以说要么要传地址要么全局变量,当然指针也可以。

任意解就会出现以下问题:

  • 你的解比最小正整数解大
  • 你的解是个负数

解决思路: x x x的值是可以任意的加上批量 b b b的。

为什么?

a x + b y = 1 ax + by = 1 ax+by=1(假设 a a a b b b互质)

a x + b y + k ∗ a b − k ∗ a b = 1 ax + by + k * ab - k * ab = 1 ax+by+kabkab=1

a ( x + b k ) + b ( y − a k ) = 1 a(x+bk) + b(y-ak) = 1 a(x+bk)+b(yak)=1 或者 a ( x − b k ) + b ( y + a k ) = 1 a(x-bk) + b(y+ak) = 1 a(xbk)+b(y+ak)=1

那就很简单了,如果小于0,那就一直加 b b b直到 x > 0 x > 0 x>0。如果大于的话就取模。

上面说的大概是不对的。刚刚好像发现扩展欧几里得所得到的解是 x + y x+y x+y最小的一组解。

那么要是想要改变 x x x y y y的值的话,那就可以 x ± L C M ( a , b ) a x±\frac{LCM(a, b)}{a} x±aLCM(a,b), y ± L C M ( a , b ) b y±\frac{LCM(a, b)}{b} y±bLCM(a,b)

但是如果只是想要最小正整数解的话,完全可以 ( x + b ) % b (x + b) \% b (x+b)%b

三、素数问题

素数问题一般指的就是将素数筛出来。~~出于懒惰,~~这里不会讲解欧拉筛法。

那就只剩下埃氏筛啦!!

超级暴力,时间复杂度是 O ( n l o g l o g n ) O(nloglogn) O(nloglogn)具体实现大概就是要枚举前 n \sqrt{n} n 个数。如果这个数没有被访问过,那就说明这个数是素数,标出来。然后将它所有的倍数都标记为已访问过(也就是合数)。最终就将所有的素数都找出来了 O r z Orz Orz

void prime(int n){
    bool vis[maxn];
    int m=(int)sqrt(n + 0.5);
    memset(vis, 0, sizeof(vis));
    vis[1] = 1;
    for(int i = 2;i <= m;i++)
        if (!vis[i])
            for (int j = i * i;j <= n;j += i)
            	vis[j]=1;
}

在这个程序里是如果是素数 v i s [ i ] vis[i] vis[i]就是 0 0 0

四、逆元

一个数逆元在一般情况下就是等于这个数的倒数,也就是 i n v [ x ] = x − 1 inv[x] = x ^ {-1} inv[x]=x1。但是,如果在膜p意义下就不一定了。为什么不一定呢?

思考…

那么在膜p意义下的逆元应该怎么求呢?在我这里有这么几个办法:

1、扩展欧几里得法

扩展欧几里得在之前也已经讲了,那么应该如何应用呢??

a x ≡ 1 ( % p ) ax≡1(\% p) ax1(%p)

那么这个就很明显, a a a x x x % p \%p %p意义下的逆元。这个式子就是一个同余方程啊,那就这么转化:

a x % p = 1 ax \% p = 1 ax%p=1

a x − b p = 1 ax - bp = 1 axbp=1

这里面x和p是已知的。那就让 x ′ = a x' = a x=a a ′ = x a' = x a=x b ′ = p b' = p b=p,$ y’ = b$。

然后就转化为了:

a ′ x ′ + b ′ y ′ = 1 a'x' + b'y' = 1 ax+by=1

就此完成了转化。但是限制条件就是 x x x p p p要互质.

2、费马小定理

费马小定理内容是这个样子的:

a p − 1 ≡ 1 ( % p ) a^{p-1}≡1(\% p) ap11(%p)

那我们就可以利用这个定理来解决问题了。

我们进行这样的转化:

a ∗ a p − 2 ≡ 1 ( % p ) a * a^{p - 2}≡1(\% p) aap21(%p)

很明显, a p − 2 a^{p - 2} ap2就是 a a a的逆元。这个就可以用快速幂来实现了。 p p p要是质数。

那问题来了,如果说他们不互质,那该怎么求???

3、递推法

先给出结论:

i n v [ i ] = ( p − p / i ) ∗ i n v [ p % i ] % p inv[i] = (p - p/i) * inv[p\%i]\%p inv[i]=(pp/i)inv[p%i]%p

怎么推导呢??

我们都知道, p % p = 0 p\%p = 0 p%p=0

那么就说明 p / i ∗ i + p % i ≡ 0 ( % m ) p/i * i + p\%i ≡ 0(\%m) p/ii+p%i0(%m)

为了方便 ,我们来换一下元。设 t = p / i t = p/i t=p/i k = p % i k = p\%i k=p%i

那么原式就成了:

= t ∗ i + k ≡ 0 ( % m ) =t * i + k ≡ 0(\%m) =ti+k0(%m)

= − t ∗ i ≡ k ( % m ) =-t * i ≡ k(\%m) =tik(%m)(移项)

= − t / k ≡ 1 / i ( % m ) =-t/k ≡ 1/i(\%m) =t/k1/i(%m)(同时除以 i ∗ k i*k ik

= − t ∗ 1 / k ≡ 1 / i ( % m ) =-t * 1/k ≡ 1/i(\%m) =t1/k1/i(%m)

= − t ∗ i n v [ k ] ≡ i n v [ i ] ( % m ) =-t * inv[k] ≡ inv[i](\%m) =tinv[k]inv[i](%m)

i n v [ i ] = − p / i ∗ i n v [ p % i ] % p inv[i]=-p/i * inv[p\%i]\%p inv[i]=p/iinv[p%i]%p

= ( p − p / i ∗ i n v [ p % i ] % p ) = (p-p/i * inv[p\%i]\%p) =(pp/iinv[p%i]%p)

很难受的是,这个算法必须保证 p p p是奇素数。

SP、阶乘的逆元

一般用阶乘用的最多的就是排列组合了吧。在这里就不打算说排列组合了,就直接给公式吧:

A n m = n ! ( n − m ) ! A_n^m = \frac{n!}{(n-m)!} Anm=(nm)!n!

这里 A A A表示排列数,也就是同样的数字不一样排也算在内。

C n m = n ! m ! ( n − m ) ! C_n^m = \frac{n!}{m!(n-m)!} Cnm=m!(nm)!n!

这个就不用说了吧。上面的式子都是从 n n n个数字中选择 m m m个进行组合。我们发现在分母中都出现了阶乘,那么在模数意义下肯定要乘逆元啦。那么,怎么算逆元呢??

fac[0] = 1;
for(int i = 1; i <= n; i++){
	fac[i] = fac[i - 1] * i % mod;
}
invfac[n] = pow(n, mod - 2);
for(int i = n; i >= 1; i--){
	invfac[i - 1] = invfac[i] * i % mod;
}

这样就打表找出了阶乘的逆元。

4、欧拉法

唉,真香,明明刚刚说了不说欧拉函数来着 O r z Orz Orz

欧拉函数可以用来求逆元。但是在这之前,我们要先来了解一下欧拉函数。

欧拉函数, φ ( x ) φ(x) φ(x),是用来表示在小于等于 x x x的数中有多少与 x x x互质。特别来说, φ ( 1 ) = 1 φ(1) = 1 φ(1)=1.

欧拉函数还有一下这么几个性质:

  1. 若a为质数, φ ( a ) = a − 1 φ(a)=a-1 φ(a)=a1
  2. 若a为质数, b % a = 0 , p h i ( a ∗ b ) = p h i ( b ) ∗ a b \% a=0,phi(a * b) = phi(b)*a b%a=0,phi(ab)=phi(b)a
  3. 若a b互质, φ ( a ∗ b ) = φ ( a ) ∗ φ ( b ) φ(a*b)=φ(a)*φ(b) φ(ab)=φ(a)φ(b)

那么我们就可以把求欧拉函数和筛素数放在一块来求 O r z Orz Orz

int prime[maxn];//筛素数,若为素数则为0,否则为1
int p[maxn];//用来存放素数
int cnt;//有多少个素数
int phi[maxn];//欧拉函数
int n;

void getphi(){
    phi[1] = 1;
    for(int i = 2; i <= n; i++){
        if(!prime[i]){//如果是质数
            p[++cnt] = i;
            phi[i] = i - 1;//由特性1可知
        }
        for(int j = 1; j <= cnt && p[j] * i < n; j++){
            prime[p[j] * i] = 1;
            if(!i % p[j]){
                phi[p[j] * i] = phi[i] * p[j];//特性2
                break;
            }
            else phi[p[j] * i] = phi[i] * (p[j] - 1);//特性3
        }
    }
}

那么,怎么求逆元呢?

这就需要我们的欧拉定理了!

a φ ( p ) ≡ 1 ( % p ) a^{φ(p)}≡1(\% p) aφ(p)1(%p)

那么我们将它转化一下:

a ∗ a φ ( p ) − 1 ≡ 1 ( % p ) a*a^{φ(p)-1}≡1(\% p) aaφ(p)11(%p)

所以 a φ ( p ) − 1 a^{φ(p)-1} aφ(p)1就是 a a a的逆元了

五、Lucas定理

定理内容:如果 p p p是质数,那么对于任意整数 1 < = m < = n 1 <= m <= n 1<=m<=n,有:

C n m = C n   m o d   p m   m o d   p ∗ C n / p m / p ( m o d   p ) C^m_n = C^{m\ mod\ p}_{n\ mod\ p} * C^{m/p}_{n/p}(mod\ p) Cnm=Cn mod pm mod pCn/pm/p(mod p)

说白了就是把 n n n m m m表示成 p p p进制数,对 p p p进制下的每一位分别计算组合数,也就是所谓的『分治』思想吧

	#include <iostream>
	using namespace std;
	#define endl "\n"

    long long p;
    long long pow(long long a, long long n) {
        long long res = 1;
        while(n) {
            if(n & 1) res *= a;
            a *= a;
            n >>= 1;
        }
        return res;
    }
    
    long long C(long long n, long long m) {
        if(m > n) return 0;
        long long a = 1, b = 1;
        for(register long long i = n - m + 1; i <= n; ++i)
            a = (a * i) % p;
        for(register long long i = 2; i <= n; ++i)
            b = (b * i) % p;
        return a * pow(b, p - 2) % p;
    }
    
    long long Lucas(long long n, long long m) {
        if(!m) return 1;
        return (C(n % p, m % p) * Lucas(n / p, m / p)) % p;
    }
    int main() {
        int n, m;
        cin >> n >> m;
        cout << Lucas(n, m) << endl;
    }

因为设置的情景实在 % p \%p %p意义下,所以取了逆元,用的是费马小定理。组合数也是用的公式法

六、欧拉定理

a φ ( n ) ≡ 1 ( m o d   n ) a^{φ(n)} ≡ 1(mod\ n) aφ(n)1(mod n)

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值