研究生补课——信号与系统

目的:由于本科培养计划无信号与系统,故研究生阶段补课

注:学习参考bilibili大学【祖师爷奥本海姆讲《信号与系统》合集(模拟与数字信号处理)-MIT麻省理工学院公开课】 https://www.bilibili.com/video/BV1CZ4y1j7hs/?p=2&share_source=copy_web&vd_source=645083167d90b51b0cbda3f8d9334f17

视频P1:引言

线性时不变

视频P2:正弦信号和指数信号

有趣的结论

1、离散正弦函数函数相移不一定等于时移
2、离散正弦函数函数不一定具有周期性
3、离散正弦函数改变 Ω 值有可能和原函数图像相同

证明

1、 设 X 1 = c o s ( Ω 1 ( m + m 0 ) ) , X 2 = c o s ( Ω 1 m + φ ) , 若 使 X 1 = X 2 , 则 需 满 足 Ω 1 m 0 = φ , 即 设X_1=cos(Ω_1(m+m_0)),X_2=cos(Ω_1m+φ),若使X_1=X_2,则需满足Ω_1m_0=φ,即 X1=cos(Ω1(m+m0))X2=cos(Ω1m+φ)使X1=X2Ω1m0=φ Ω 1 φ = m 0 ( m 0 为 整 数 ) {Ω_1\over φ}=m_0(m_0为整数) φΩ1=m0m0,得证离散正弦函数相移不一定等于时移。

例: φ = 41 3 π , Ω 1 = 2 。 Ω 1 φ = 2 ∗ 3 41 π ≠ m 0 ( m 0 为 整 数 ) φ={41\over3}π,Ω_1=2。{Ω_1\over φ}=2*{3\over41π}\not=m_0(m_0为整数) φ=341πΩ1=2φΩ1=241π3=m0m0

2、设 X 1 ( m ) = c o s ( Ω 1 m + φ ) , X 1 ( m + M 0 ) = c o s ( Ω 1 ( m + M 0 ) + φ ) X_1(m)=cos(Ω_1m+φ),X_1(m+M_0)=cos(Ω_1(m+M_0)+φ) X1(m)=cos(Ω1m+φ)X1(m+M0)=cos(Ω1(m+M0)+φ)
X 1 = X 2 X_1=X_2 X1=X2,则 Ω 1 M 0 = 2 π N ( M 0 , N 为 整 数 ) Ω_1M_0=2πN(M_0,N为整数) Ω1M0=2πN(M0,N),所以 Ω 1 = 2 π N M 0 Ω_1={2\pi N\over M_0} Ω1=M02πN,所以 M 0 M_0 M0的最小值为周期,虽然有时离散函数看起来有周期性但是 M 0 M_0 M0的最小值可能和你想象的不一样,或者没有解。

例: Ω 1 = 4 π Ω_1=4\pi Ω1=4π,当 N = 2 N=2 N=2时, M 0 M_0 M0最小值为 1 1 1,则 X 1 X_1 X1周期为 1 1 1

例: Ω 1 = 2 π 12 Ω_1={2\pi\over12} Ω1=122π,当 N = 1 N=1 N=1时, M 0 M_0 M0最小值为 12 12 12,则 X 1 X_1 X1周期为 12 12 12。而此时 2 π Ω 1 = 12 {2\pi\overΩ_1}=12 Ω12π=12

例: Ω 1 = 4 π 31 Ω_1={4\pi\over31} Ω1=314π,当 N = 2 N=2 N=2时, M 0 M_0 M0最小值为 31 31 31,则 X 1 X_1 X1周期为 31 31 31。而此时 2 π Ω 1 = 31 / 2 {2\pi\overΩ_1}=31/2 Ω12π=31/2

例: Ω 1 = 8 43 Ω_1={8\over43} Ω1=438 M 0 M_0 M0无整数解。而此时 2 π Ω 1 = 43 π 4 {2\pi\overΩ_1}={43\pi\over4} Ω12π=443π

3、 设 X 1 = c o s ( Ω 1 m + φ ) , X 2 = c o s ( ( Ω 1 + 2 π ) m + φ ) , 则 X 1 = X 2 设X_1=cos(Ω_1m+φ),X_2=cos((Ω_1+2π)m+φ),则X_1=X_2 X1=cos(Ω1m+φ)X2=cos((Ω1+2π)m+φ)X1=X2
很神奇,两个离散正弦函数角速度不同,但是图像却是一样的
代码见附录
代数证明:
X 1 = c o s ( Ω 1 m + φ ) X_1=cos(Ω_1m+φ) X1=cos(Ω1m+φ)
X 2 = c o s ( ( Ω 1 + 2 π ) m + φ ) = c o s ( Ω 1 m + 2 π m + φ ) X_2=cos((Ω_1+2π)m+φ)=cos(Ω_1m+2πm+φ) X2=cos((Ω1+2π)m+φ)=cos(Ω1m+2πm+φ)
因为 m 是 整 数 , 所 以 c o s ( Ω 1 m + 2 π m + φ ) = c o s ( Ω 1 m + φ ) , 即 X 1 = X 2 m是整数,所以cos(Ω_1m+2πm+φ)=cos(Ω_1m+φ),即X_1=X_2 mcos(Ω1m+2πm+φ)=cos(Ω1m+φ)X1=X2

视频P3:信号与系统的重要属性

时不变属性

原点是什么,主不在乎。如果输入有一个时间位移,则输出也会有一个相应的位移。
C-T:
x ( t ) x(t) x(t) -> y ( t ) y(t) y(t)
x ( t − t 0 ) x(t-t_0) x(tt0) -> y ( t − t 0 ) y(t-t_0) y(tt0)
反例:
y ( t ) y(t) y(t)= s i n ( t ) ∗ x ( t ) sin(t)*x(t) sin(t)x(t)

线性属性

这些输入进行线性组合后,相应的输出会有相同的线性组合。
x ( t ) x(t) x(t) -> y ( t ) y(t) y(t)
a x 1 ( t ) + b x 2 ( t ) ax_1(t)+bx_2(t) ax1(t)+bx2(t) -> a y 1 ( t ) + b y 2 ( t ) ay_1(t)+by_2(t) ay1(t)+by2(t)

例如: y ( t ) = 2 x ( t ) + 3 y(t)=2x(t)+3 y(t)=2x(t)+3不是线性系统

视频P4:卷积

尝试理解祖师爷的话:知道t=0时刻的脉冲响应,即可以知道他使用卷积对任意输入的响应。

用冲激表示连续时间信号
将连续时间信号分解为宽为 Δ \Delta Δ的矩形。
并且我们知道 Δ δ Δ ( t ) = 1 \Delta\delta_\Delta(t)=1 ΔδΔ(t)=1
则此信号可以近似为 x ^ ( t ) = ∑ k = − ∞ + ∞ x ( k Δ ) δ Δ ( t − k Δ ) Δ \widehat{x}(t)=\sum_{k=-\infty}^{+\infty} x(k\Delta)\delta_\Delta(t-k\Delta)\Delta x (t)=k=+x(kΔ)δΔ(tkΔ)Δ
当矩形的宽 Δ \Delta Δ趋近于0, x ^ ( t ) \widehat{x}(t) x (t)趋近于 x ( t ) x(t) x(t),最后极限就是 x ( t ) x(t) x(t)。因此 x ( t ) = ∫ − ∞ + ∞ x ( τ ) δ τ ( t − τ ) d τ x(t)=\int_{-\infty}^{+\infty}x(\tau)\delta_\tau(t-\tau)d\tau x(t)=+x(τ)δτ(tτ)dτ
因为当 τ ≠ t \tau\neq t τ=t时, δ τ ( t − τ ) = 0 \delta_\tau(t-\tau)=0 δτ(tτ)=0,所以只有当 t = τ t=\tau t=τ x ( t ) ≠ 0 x(t)\neq0 x(t)=0。所以有 x ( t ) = ∫ − ∞ + ∞ x ( t ) δ τ ( t − τ ) d τ x(t)=\int_{-\infty}^{+\infty}x(t)\delta_\tau(t-\tau)d\tau x(t)=+x(t)δτ(tτ)dτ,(但是这个地方为什么 δ τ ( t − τ ) d τ \delta_\tau(t-\tau)d\tau δτ(tτ)dτ不换成 δ τ ( t − t ) d t \delta_\tau(t-t)dt δτ(tt)dt
在这里插入图片描述

附录:

%不同Ω值的离散正弦函数图像相同例证
x1 = 0:0.001:10;
y11 = cos(x1);
y12 = cos((1+2*pi)*x1);
x2 = 0:10;
y21 = cos(x2);
y22 = cos((1+2*pi)*x2);
plot(x2,y21,'b*',x2,y22,'ro',x1,y11,'b',x1,y12,'r')
title('不同Ω值的离散正弦函数图像相同例证')
xlabel('0 < x < 10') 
ylabel('函数值') 
hold on
for i = 1:10
    plot([x2(i),x2(i)],[0,y21(i)],'b');
end
legend({'y = cos(x1)','cos((1+2*pi)*x1)'},'Location','southwest')

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值