基于成本栅格数据的空间路径分析
文章目录
前言
本文基于立方数据院学习平台的学习,介绍构建成本权重栅格数据、基于成本栅格求解最低成本路径、批量求解多起点到多终点的最低成本路径。
一、基本原理与思路
1.1 核心要点
设置起点与终点
构建成本权重栅格数据
实现最短路径路线图
1.2 基本概念
源: 指距离分析中的目标或目的地
成本:指从起点到终点过程中所需要花费的成本,包括了时间、金钱等。影响成本的要素可以是单个也可以是多个
成本距离加权数据: 通过量化多个成本指标,最后按照一定权重比例叠加的结果。也就是被量化之后的最终成本数据距离方向数据:表示从每一个单元格出发,沿着最低累计成本路径达到最近目标的路线方向。
①(a)图代表成本距离加权数据
②(b)图代表方向数据
③©图代表每个单元格的方向值数据
1.3 距离分析工具(主要)
- 成本路径
①生成距离栅格数据
②生成回溯链接栅格数据 - 成本路径
生成成本路径栅格数据 - 欧氏距离
生成距离栅格数据
1.4 分析思路
数据认知
起点和终点/地形栅格数据/湾斑块/河流水域/现状道路
构建成本权重栅格数据
定义/量化 最低成本 → 什么是最低成本?
①尽量现状道路进行
②避开河流水域
③尽量靠近村湾建设用地
④坡度越小的地方成本越低
成本加权
叠加数据 = (“道路指标”*0.3+ “建设用地指标”*0.3+“坡度指标”*0.4 ) +“水域指标”
①“道路指标”:0-10
②“建设用地指标”:0-10
③坡度指标” :0-10
④“水域指标”:10
由于水域是决定性指标,因此其指标数量较大。
二、构建成本栅格数据
2.1 环境设置
2.2 坡度因素
表面分析,生成坡度
重分类: 按照标准分为10类
重点: 坡度越小成本越低!
更改布局并增加图例
2.3 建设用地因素
欧氏距离
重分类: 相等的间隔分为10类
重点:距离越近成本越低 !
2.4 水域因素
要素转栅格
判断是否有空值
重分类
0表示有水(10分),1表示无水(0分)
2.5 道路因素
道路等级赋分
要素转栅格
判断是否有空值
综合取值
2.6 计算加权
叠加数据= (“道路指标”*0.3+ “建设用地指标”*0.3+“坡度指标”*0.4)+“水域指标”
三、基于成本栅格数据求解最低成本路径
基于栅格成本生成最低成本路径使用的工具为“成本路径”。在“成本路径”工具的输入要素中要求“输入成本距离栅格数据”和“输入成本回溯链接栅格数据”。
这两个数据需要我们使用到另外一个工具“成本距离”来得到。
3.1 利用成本距离工具得到成本距离栅格数据和成本回溯链接栅格数据
加载起点、终点数据
加载数据
构建距离成本
以起点开始计算“成本距离
成本距离
成本方向
3.2 使用“成本路径”工具得到最低成本路径
实现最短路径路线图
生成路径
生成路径 多个终点时的情况
将栅格格式的路径转出
四、批量求解多起点到多终点的最低成本路径
4.1 多起点多终点生成路径网路
构建模型
起点连接迭代要素器(按ID分组)
起点数据作为要素源,成本数据作为成本连接成本距离工具
距离作为成本栅格数据,方向作为成本回溯链接栅格数据,终点作为输入要素连接成本路径工具
连接栅格转折线工具(行内变量替换)
合并线路
4.2 路径3D效果的可视化
等值线设置并浮在表面
加载路径和起终点,并浮于表面
总结来说,基于成本栅格数据计算最低成本路径是一种空间选线方法,比如绿道选线,河流选线等。其在工具操作上并不复杂,关键点在于要根据分析目标构建出合理的成本栅格数据。