【ADS学习笔记(二)——ADS初次仿真】

本文详细介绍了如何使用ADS设计电路图,包括选择元件、更改元件值、创建自定义Symbol以及进行S参数仿真。在仿真部分,讲解了设置仿真参数、查看结果图表和数据的操作,最后提到通过优化元件值来改善滤波器性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、设计电路图

创建好原理图后,在元件库面板选择Lumped-Components元件库,里面含有各种集成元件,R、L、C等,点击元件图标在画布内放置元件。点击工具栏可添加导线,点击可添加接地点,点击可添加端口。设计电路图如图所示(无源滤波器)。

二、更改元件值

更改元件值有多种办法,例如在元件下方显示的原件值中直接更改。

或者左键双击元件,在参数窗口更改。

该窗口可更改元件的一系列参数 ,可根据需要修改。点击Equation Editor可对该元件的某个值用等式表示,ADS会自动计算该值。在该窗口也可更改元件类型,点击Swap Component可选择更改为其他元件。当需要更改多个元件的类型时,例如将所有电感更改为含有Q值得电感,选中每个电感,点击Edit--Component--Swap Component,在Cell name里选择或输入INDQ,点击Swap即可更换。

三、创建Symbol

在同一cell中新建一个Symbol,右键单击cell--New--Symbol--Create Symbol--OK

 ADS会根据cell中的schematic自动设置端口引脚,也可以自己手动设置引脚大小,颜色,名称等。

 

 symbol是与schematic对应的,方便简化电路图。symbol的作用类似于元件库中的元件,可供设计师放置。

 四、S参数的仿真

新建一个schematic,该schematic在新的cell中(一般一个cell中最好只有一个schematic)。在主界面直接将刚刚创建的symbol拖拽至schematic画布中放置。

 在元件库选择Simulation-S_Param,点击添加S参数仿真控制器。

双击S参数仿真控制器,弹出对话框,在“Frequency”标签页进行参数设置,包括扫描类型、扫面范围等。

 而在“Parameter”标签页,可以选择计算电路的S参数,Y参数,Z参数,群延时等。

 在“Noise”标签页,可选择计算噪声。“Display”标签页则是选择在画布中需要显示的信息,这在其它控件中是相似的。在Simulation-S_Param元件库中,包含了许多其他常用计算控件,例如:计算电压增益、计算电压驻波比、计算增益平坦度等。添加完添加S参数仿真控制器后,再添加两个作为负载,默认50欧姆。至此基本仿真模型搭建结束。

 点击选中,再点击工具栏中,可快捷查看symbol的电路原理图,再点击即可返回symbol。

五、运行仿真

运行仿真有多种方式:

(1)点击菜单栏Simulate--Simulate即可;

(2)点击工具栏快捷操作;

(3)键盘F7快捷按钮。

运行仿真后,弹出数据显示窗口。点击插入直角坐标视图,选择需要查看的数据,例如S(1,1),点击Add,选择数据的刻度,例如dB、dBm等形式,点击OK。

一个视图可显示多个内容,将S(1,1),S(1,2)都添加显示。

点击可对视图进行放大、缩小、重置等操作。点击可插入标记、寻找极值和最值等。

点击插入数据列表视图。 可直观看出具体值。

点击可翻页,跳行查看数据。

至此初次ADS仿真结束。但我们可以看到,目前滤波器电路的特性很差,需要进一步的调整元件值,来优化性能。这在后续内容中,将得到解决。

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值