我一直找precision和recall怎么计算,因为一直调用函数的关系,我以为tensorflow已经封装写好了这样的调用的方法,一直没找到,看来是自己太懒惰了,失去了动手的欲望,在下面的地址中看到别人写的代码,虽然不能照搬使用,能有所启发也是很重要啊。
https://gist.github.com/Mistobaan/337222ac3acbfc00bdac
def tf_confusion_metrics(model, actual_classes, session, feed_dict):
predictions = tf.argmax(model, 1)
actuals = tf.argmax(actual_classes, 1)
ones_like_actuals = tf.ones_like(actuals)
zeros_like_actuals = tf.zeros_like(actuals)
ones_like_predictions = tf.ones_like(predictions)
zeros_like_predictions = tf.zeros_like(predictions)
tp_op = tf.reduce_sum(
tf.cast(
tf.logical_and(
tf.equal(actuals, ones_like_actuals),
tf.equal(predictions, ones_like_predictions)
),

本文介绍了在TensorFlow中手动计算precision、recall和F1分数的方法。作者分享了寻找相关代码的经历,并提醒读者不要过度依赖库函数,有时自己实现也能带来启示。
最低0.47元/天 解锁文章
2628

被折叠的 条评论
为什么被折叠?



