tensorflow中precision,recall和F1

本文介绍了在TensorFlow中手动计算precision、recall和F1分数的方法。作者分享了寻找相关代码的经历,并提醒读者不要过度依赖库函数,有时自己实现也能带来启示。
摘要由CSDN通过智能技术生成

我一直找precision和recall怎么计算,因为一直调用函数的关系,我以为tensorflow已经封装写好了这样的调用的方法,一直没找到,看来是自己太懒惰了,失去了动手的欲望,在下面的地址中看到别人写的代码,虽然不能照搬使用,能有所启发也是很重要啊。
https://gist.github.com/Mistobaan/337222ac3acbfc00bdac

def tf_confusion_metrics(model, actual_classes, session, feed_dict):
  predictions = tf.argmax(model, 1)
  actuals = tf.argmax(actual_classes, 1)

  ones_like_actuals = tf.ones_like(actuals)
  zeros_like_actuals = tf.zeros_like(actuals)
  ones_like_predictions = tf.ones_like(predictions)
  zeros_like_predictions = tf.zeros_like(predictions)

  tp_op = tf.reduce_sum(
    tf.cast(
      tf.logical_and(
        tf.equal(actuals, ones_like_actuals), 
        tf.equal(predictions, ones_like_predictions)
      ), 
   
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>