论文发表于1990年,作者哈佛大学数学系毕业,
虽然作者写得很辛苦,但是呢,相关成果在当前并未成为主流,因为我们知道后面LSTM出来了嘛。
一句话概括这篇文章干了啥:
扯白了就是,对于上面图中这个考虑过往输入X(T-1),X(T-2)的RNN结构,作者给出了相关公式,
n
e
t
i
(
t
)
=
∑
j
=
1
i
−
1
W
i
j
x
j
(
t
)
+
∑
j
=
1
N
+
n
W
i
j
′
x
j
(
t
−
1
)
+
∑
j
=
1
N
+
n
W
i
j
′
′
x
j
(
t
−
2
)
net_i(t)=\sum_{j=1}^{i-1}W_{ij}x_j(t)+\sum_{j=1}^{N+n}W_{ij}^{'}x_j(t-1)+\sum_{j=1}^{N+n}W_{ij}^{''}x_j(t-2)
neti(t)=j=1∑i−1Wijxj(t)+j=1∑N+nWij′xj(t−1)+j=1∑N+nWij′′xj(t−2)
并且对于此类网络如何使用反向传播更新权重给出了自己的伪代码。
上面这个图什么意思呢?
当然了,github是2008年才出来的,所以也就没有代码。
但是我们后来都是使用LSTM的,所以这个论文看下大致思路就可以了。