Backpropagation Through Time:What it Does and How to Do it论文解读

论文发表于1990年,作者哈佛大学数学系毕业,
虽然作者写得很辛苦,但是呢,相关成果在当前并未成为主流,因为我们知道后面LSTM出来了嘛。
一句话概括这篇文章干了啥:
在这里插入图片描述
扯白了就是,对于上面图中这个考虑过往输入X(T-1),X(T-2)的RNN结构,作者给出了相关公式,
n e t i ( t ) = ∑ j = 1 i − 1 W i j x j ( t ) + ∑ j = 1 N + n W i j ′ x j ( t − 1 ) + ∑ j = 1 N + n W i j ′ ′ x j ( t − 2 ) net_i(t)=\sum_{j=1}^{i-1}W_{ij}x_j(t)+\sum_{j=1}^{N+n}W_{ij}^{'}x_j(t-1)+\sum_{j=1}^{N+n}W_{ij}^{''}x_j(t-2) neti(t)=j=1i1Wijxj(t)+j=1N+nWijxj(t1)+j=1N+nWijxj(t2)
并且对于此类网络如何使用反向传播更新权重给出了自己的伪代码。
上面这个图什么意思呢?

当然了,github是2008年才出来的,所以也就没有代码。
但是我们后来都是使用LSTM的,所以这个论文看下大致思路就可以了。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值