AIGC实践|探索用AI做包装设计全流程

前言:

在了解了AI在视频短片、游戏开发及有声绘本中的应用之后,本次我将尝试使用AI完成包装设计,展示我如何使用AI探索包装设计从概念构思到视觉设计,再到最终成品的过程,涵盖品牌定位、设计元素生成、包装效果展示、及后期运营等阶段。让我们再次踏上这段探索之旅吧~!

图片

一、包装设计流程

包装设计是一门融合了艺术与实用的综合性学科,在品牌价值传递中扮演着重要的角色。通常情况下,包装设计流程包含「品类市场调研」「竞品分析」「包装设计」「试做/打样」「测试反馈」等,为了更好的展示包装效果,在本篇文章中,加入了包装设计后期的「品牌延伸」部分内容的展示。「试做/打样」「测试反馈」仅做简单介绍。

图片

品类市场调研:这是包装设计的第一步,需要对该产品品类与其常见的包装形式有所了解。

竞品分析:针对市面上同类产品分析,通常同类商品会摆放在货架的同一位置上,对竞品包装进行分析,以便找到可能的差异化切入点,建立品牌特性。

包装设计:包装设计包含了三个小部分,视觉设计、包装造型结构设计、包装材质及印刷工艺选择。包装结构设计相比其他两个部分更复杂一些,虽然大学细分专业是包装设计,毕业作品也是一套包装,但是包装结构这方面确实是比较磨人的考验。

试做/打样:在电脑上设计完后,需要打样看颜色效果及结构,除了调整色差等,还可以更好的模拟实际使用场景,减少后期大批量生产的失误。

测试反馈:前面的包装设计和打样过程可能会反复循环,最后测试评估出最适

### AIGC产品设计项目实战经验 #### 设计流程概述 在电商领域,AIGC的应用不仅限于简单的图像生成或文案创作。通过融合多种技术手段,可以实现更加复杂的产品设计方案。例如,在创建个性化推荐系统时,利用Transformer模型分析用户行为模式并预测潜在需求[^1]。 ```python import torch from transformers import BertTokenizer, BertForSequenceClassification tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForSequenceClassification.from_pretrained('bert-base-uncased') def analyze_user_behavior(text): inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) return predictions.detach().numpy() ``` 这段代码展示了如何使用预训练好的BERT模型来评估一段描述性的文本输入,并给出分类概率分布作为输出结果之一。这有助于理解不同类型的顾客偏好特征,从而为后续的设计决策提供依据。 #### 商业化思路拓展 除了上述提到的技术细节外,还需要考虑具体的商业应用场景。比如针对特定节日推出限时促销活动页面;或是根据不同地区文化差异调整商品展示风格等措施都能显著提升用户体验满意度以及转化率水平。 对于希望快速上手的新手来说,可以从模仿现有成功案例入手,逐步积累实践经验。同时积极关注行业动态和技术发展趋势,保持持续学习的态度也非常重要。 #### 官方总结要点回顾 综上所述,将AI技术融入日常工作流程已经成为不可阻挡的趋势。无论是提高工作效率还是创造更多价值方面都展现出巨大潜力。因此建议相关人员尽早掌握相关技能以便在未来竞争中占据有利位置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值