2021-05-20 神经网络训练微调策略

本文探讨了迁移学习中微调的四种主要场景:1) 当新数据集小但与原数据集相似,只训练最后一层;2) 数据量大且相似,可微调整个网络;3) 数据量小但内容不相似,冻结大部分卷积层,调整高层;4) 数据量大且内容差异大,建议从头训练。微调策略的选择取决于数据集的特性和相似度。
摘要由CSDN通过智能技术生成

微调(Fine- Tuning)

迁移学习策略取决于多种因素,但最重要的两个是新数据集的大小以及新数据集与原数据集的相似度。以下是4个主要情景

新数据集量小,内容上相似

这种情况下,通常情况我们只需要训练最后的输出层,即最后一层,因为可能分类的数量不同,最后一层需要做修改。(平时最常见)

新数据集量大,内容上相似

这是最理想的情况,我们可以微调整个网络,因为数据量足够大不用担心过拟合。

新数据集量小,内容不相同

由于数据较小,且相似度低,这种情况使用微调效果不是很好,可以尝试冻结前边大部卷积层,重新训练网络的高层卷积层及全连接层。

新数据集量大,内容不相同

由于数据集很大,且相似度比价低,最好不要使用预训练模型,从头开始训练整个网络。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值