linux 通过JDBC连接数据库,使用Spark读写MySql数据库的数据(2021-10-3)

一、在mysql建立数据库和表

1.启动mysql

[ root@hadoop00 mysql5.7]#service mysql start
[ root@hadoop00 mysql5.7]#./bin/mysql -u root -p   #启动mysql

2.建立数据库和表

mysql> create database spark;
mysql> use spark;
mysql> create table student (id int(4), name char(20), gender char(4), age int(4));
mysql> alter table student change id id int auto_increment primary key;
mysql> insert into student values(1,'Xueqian','F',23);
mysql> insert into student values(2,'Weiliang','M',24);
mysql> select * from student;

结果:
在这里插入图片描述

二、下载mysql的jdbc驱动

1.wget+对应版本下载地址 下载驱动包
m

Spark SQL可以通过JDBC连接MySQL数据库,实现读写数据的操作。 具体步骤如下: 1. 在Spark应用程序中,引入MySQL JDBC驱动程序。 2. 使用SparkSession对象创建一个DataFrame,指定MySQL数据库连接信息和查询语句。 3. 使用DataFrame的API进行数据读取或写入操作。 例如,以下代码演示了如何使用Spark SQL通过JDBC连接MySQL数据库读取数据: ``` import org.apache.spark.sql.SparkSession object SparkSQLJDBCExample { def main(args: Array[String]): Unit = { val spark = SparkSession.builder() .appName("Spark SQL JDBC Example") .master("local[*]") .getOrCreate() val jdbcDF = spark.read .format("jdbc") .option("url", "jdbc:mysql://localhost:3306/test") .option("driver", "com.mysql.jdbc.Driver") .option("dbtable", "employee") .option("user", "root") .option("password", "password") .load() jdbcDF.show() spark.stop() } } ``` 在这个例子中,我们使用SparkSession对象创建了一个DataFrame,通过JDBC连接MySQL数据库,读取了employee表中的数据,并使用show()方法展示了数据。 类似地,我们也可以使用DataFrame的API进行数据写入操作,例如: ``` jdbcDF.write .format("jdbc") .option("url", "jdbc:mysql://localhost:3306/test") .option("driver", "com.mysql.jdbc.Driver") .option("dbtable", "employee_copy") .option("user", "root") .option("password", "password") .save() ``` 这段代码将DataFrame中的数据写入到MySQL数据库的employee_copy表中。 总之,Spark SQL通过JDBC连接MySQL数据库,可以方便地实现数据读写操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值