TVP-VAR:时变参数向量自回归模型

本文介绍了向量自回归模型(VAR)的基本概念及其应用。VAR模型由Sims于1980年提出,旨在解决传统计量经济模型中变量间复杂动态关系的问题。文章详细阐述了VAR模型的结构特点及估计方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文链接:https://www.lianxh.cn/news/eae89f78353d4.html

目录

1. VAR 模型的介绍

我们在利用计量经济模型做实证分析时,通常会以某个经济理论为依据,在此基础上借助计量模型刻画经济变量之间结构上的关系。事实上,对于实际经济中的某些问题,我们可能并不关心经济变量之间的结构关系,而是关注变量之间的动态变化关系。此外,在一个方程组中,有的变量 (内生变量) 可能会同时出现在方程的左右两边,分别作为被解释变量和解释变量。在估计这类模型时,要求方程组中的方程是可识别的 (恰好识别或过度识别) ,这就给估计和推断带来了一定难度。为了达到识别的目的,我们常常要假定某些外生变量或前定变量仅出现在某些方程中。

Sims (1980) 认为,我们为了达到识别目的所做的主观的假定往往是不可靠的,当一组变量确实存在真实的联立关系,同时我们无法判断其中的变量是否为外生变量时,原则上这些变量都应该被平等地对待,在回归之前,人为划分内生变量和外生变量的做法是不恰当的。出于这方面的考虑,Sims (1980) 提出了向量自回归模型 (VAR) 。举一个简单的例子,在两个变量的情况下,假定  受到现在和过去  的影响,并且  受到现在和过去  的影响,我们可以通过变换,将上述关系写成以下形式:

这就是 VAR 模型的一般标准形式,对于这个模型我们可以利用 OLS 进行估计。

原文链接:https://www.lianxh.cn/news/eae89f78353d4.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值