时变参数向量自回归模型 (TVP-VAR)及 Stata 具体操作步骤

目录

一、引言

二、文献综述

三、理论原理

四、实证模型

五、程序代码及解释

六、代码运行结果

七、结论


一、引言

时变参数向量自回归模型(TVP-VAR)在经济、金融等领域的研究中得到了广泛的应用,它能够捕捉模型参数的时变性,从而更好地反映经济系统的动态变化。本文将对 TVP-VAR 模型的理论原理、实证模型、稳健性检验进行阐述,并结合实际数据给出 Stata 的具体操作步骤。

二、文献综述

在经济学和金融学领域,许多学者已经运用 TVP-VAR 模型取得了有价值的研究成果。例如,Nakajima(2011)使用 TVP-VAR 模型研究了美国货币政策冲击对宏观经济变量的时变影响。他发现,在不同的经济周期阶段,货币政策的传导机制和效果存在显著差异。特别是在经济衰退期间,货币政策对产出和通货膨胀的影响相对较弱。

Stock 和 Watson(2012)通过构建 TVP-VAR 模型,分析了宏观经济不确定性对经济增长和通货膨胀的动态影响。他们的研究表明,宏观经济不确定性在经济衰退期间往往会显著增加,并且对经济增长产生较大的负面影响。

Primiceri(2005)利用 TVP-VAR 模型研究了美国的货币政策和通货膨胀之间的关系。他发现,货币政策的效果在不同的历史时期存在明显的变化,这与货币政策的操作方式、经济结构的调整以及市场预期等因素密切相关。

此外,Kilian 和 Park(2009)运用 TVP-VAR 模型考察了国际油价冲击对全球经济的时变影响。他们指出,油价冲击对不同国家和地区的经济影响程度和持续时间取决于各国的能源依赖程度、产业结构以及宏观经济政策等因素。

这些研究充分展示了 TVP-VAR 模型在捕捉经济变量之间复杂的动态关系和时变特征方面的强大能力,为政策制定者和研究者提供了更丰富和准确的信息。

三、理论原理

TVP-VAR 模型是对传统 VAR 模型的重要扩展。传统 VAR 模型假设系数是

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值