全文阅读:Stata:高度共线性情况下的IV估计-pariv| 连享会主页
目录
1. 引言
在 Stata 的应用过程中,研究者常常依赖程序对变量间的共线性进行筛选与剔除。但 Stata 程序在进行共线性识别时存在所谓“识别范围”,即有可能存在一些程序看来“不足为虑”的共线性问题,但却足以影响到参数估计的精确性。
当变量间存在高度共线性时,参数估计程序中矩阵运算的浮点数进位差会被放大,造成参数估计结果对一些与实际经济无关的因素敏感 (比如变量顺序或数据顺序)。这一情况在两阶段最小二乘法 (2SLS) 的估计中更为明显,因为 Stata 相关程序进行运算时,并没有严格地假设矩阵逆运算之后与原矩阵的内积为精确的单位阵。
据此,本推文介绍了 Young (2022) 所提出的,适用于高度共线性下的稳健 2SLS 估计方法,以及其在 Stata 内的实现代码与过程。