目录
一、引言
在当今的经济学和社会科学领域,我们常常致力于揭示各种变量之间的内在联系和因果关系。然而,在进行实证研究时,常常会遇到内生性问题,这给准确估计变量之间的真实关系带来了巨大的挑战。为了应对这一难题,两阶段最小二乘法(2SLS)应运而生,成为了研究者们手中的有力工具。
二、理论原理
在线性回归模型中,我们通常假设解释变量与误差项是相互独立的。然而,在实际情况中,这种假设往往会被打破。当某个解释变量与误差项存在相关性时,我们称其为内生解释变量。内生性的产生可能源于多种原因,例如遗漏变量、测量误差、双向因果关系等。
当存在内生解释变量时,使用普通最小二乘法(OLS)进行估计会导致估计结果出现偏差和不一致性。这是因为内生解释变量中包含了与误差项相关的信息,从而干扰了对系数的准确估计。
两阶段最小二乘法通过巧妙地引入工具变量来解决这一问题。工具变量需要满足两个关键条件:一是相关性,即工具变量与内生解释变量之间存在较强的线性关系;二是外生性&#