阅读全文:Stata:非线性模型的中介效应检验-khb (lianxh.cn)
作者:陈炜 (中山大学)
邮箱:1139457876@qq.com
1. 中介效应的研究
1.1 什么是中介效应
在进行研究的过程中,有时自变量 XX 对因变量 YY 的影响并不那么直接,可能 XX 对 YY 一部分作用是通过 XX 先对 ZZ 产生影响,ZZ 再对 YY 产生影响。也就是说不仅 XX 自身会对 YY 产生直接的影响,也可能同时找一个“中间人”来影响 YY。这个“中间人”就是中介变量,XX 影响 ZZ 再影响 YY 的这个过程就是中介效应。
1.2 中介效应的一般检验方式 (常见的线性模型)
国内学者在研究中介效应的时候往往会参考温忠麟和叶宝娟在 2014 年写的《中介效应分析:方法和模型发展》一文,该文章提出了逐步回归法、系数乘积法 (Sobel 检验)、差异系数法、Bootstrapping 检验法四种中介效应检验方法。文章自身引用量也破万,成为中介效应学习与研究的重要参考。
我们对一般的连续变量进行中介效应的分析是检验假设 H0:ab=0H0:ab=0 或者 H0:c2=c−c1=0H0:c2=c−c1=0 (XX 对YY的总影响 cc 可以由直接效应 c1c1 与间接效应 c2c2 (abab) 得到,所以此时 c2=c−c1=abc2=c−c1=ab)。
1.3 中介效应的特殊检验方式 (非线性模型)
上述的方法对一般连续变量是有效的。但是如果因变量是分类或者等级变量等非连续变量,而自变量是连续变量,应该用 Logistic 回归代替通常的线性回归,回归系数的尺度也将由连续变量量尺转换为 Logit 量尺。
但是,这样一来,中介变量 ZZ 对 XX 的回归系数 (连续变量的量尺),与 YY 对 ZZ 与 XX 的回归系数 (Logit 量尺) 不在相同的尺度上,不同方程得到的回归系数只有量尺相同才具有可比性,c−c1≠abc−c1=ab,中介效应大小不等于 abab ,导致上面检验 ab=0ab=0 或是 c−c1=0c−c1=0 的简单方式不再适用。
对于这样的模型,目前学者已提出多个解决方法:
- 通过标准化 (standardization) 转换实现回归系数的等量尺化 (Winship and Mare,1984;Long,1997;MacKinnon,2008;MacKinnon, Lockwood et al.,2007);
- 平均偏效应 (average partial effect),它反映某一自变量在其均值附近发生微小变动时,对因变量成功发生概率 (而非几率) 带来的边际影响,各子样本的平均偏效应不容易受到误差方差变异的干扰 (Wooldridge,2002;Cramer,2007);
- 二元响应模型 (binary response model) 的分解 (Erikson et al.,2005)。
除上述方法之外,还有学者提出 KHB 方法,即本文介绍重点。KHB 方法与上述方法相比往往有相同或者更好的结果 (这里的结果是指 ZZ 在多大程度上调节 XX 和 Y∗Y∗ 之间的关系) 。而且更重要的是通过简单直观的计算,分离了离散变量和连续变量的影响,将线性模型的可分解性拓展到了非线性概率模型。
2. KHB 方法原理
在这一部分,为了更好的理解 KHB 方法的原理,会将一般方法与 KHB 方法进行对照,再说明 KHB 方法使用原因的同时说明其原理。
2.1 常规方法对于连续变量
定义:Y∗Y∗ 是因变量,XX 是关键变量,其影响会部分通过 XX 传递给 YY,ZZ 是中介变量,CC 是控制变量,εε 是误差项。
常规方法对于连续变量中介效应检验分以下几步走:
- 一般模型回归:
Y∗=αF+βFx+γFZ+δFC+ε1(1)Y∗=αF+βFx+γFZ+δFC+ε1(1)
- 简化模型回归:
Y∗=αR+βRx+δRC+ε2(2)Y∗=αR+βRx+δRC+ε2(2)
- 通过比较总效应与直接效应的差异 (即间接效应) 来对中介效应进验证: βI=βR−βFβI=βR−βF