目录
前面讲述的回归分析方法都属于线性回归的范畴,即因变量和自变量之间存在线性关系。在很多情况下,线性模型都是对真实情况的一种合理又简单的近似。如果遇到回归参数不是现行的,也不能通过转换的方法将其转换为线性的参数,这时候就需要用到本章将要讲述的非线性回归分析。常用的非线性分析方法由3终,包括非参数回归分析、转换变量回归分析以及非线性回归分析。
12.1非参数回归分析
非参数回归分析与前面讲述的回归方式区别很大,是一种探索性工具,通常不会像其他回归方法一样形成一个明确的回归方程,基本上是展示因变量与自变量之间关系的图形工具。其优势在于不要求研究者事先设定模型的情况下就可直观概要的描述数据。
数据(案例12.1)是某国内保险公司采取区域事业部制的组织机构模式,在国内有两个事业部;北方事业部和南方事业部。该公司对其客户经理制定了了严格的激励约束措施,可交互精力的薪酬为基本工资乘以绩效考核系数,绩效考核系数上不封顶、下不保底,所以客户精力之间的收入差距很大。某研究者随机抽取的部分客户经理的理念考核系数如下图,请用非参数回归方法研究年份和绩效考核系数两个变量之间的关系。把所属事业部变量设定为region 年份为year 考核系数为coefficient
sum year coefficient,detail #对两个变量进行描述性统计
twoway line coefficient year #描述年份和绩效考核系数之间的变化关系,用绘图功能表示
我们可以看出使用普通的绘图方式来藐视年份和绩效考核系数之间的变化关系是非常不清晰的,所以很有必要进行非参数回归来描述这种关系。
graph twoway mband coefficient year || scatter coefficient year #本命令是对数据进行非参数回归并绘制年份和绩效考核系数之间的散点图
从图中可以看出散点图被分成了8个垂直等宽的波段,并使用线段将每一波段内的中位数(年份的中位数、绩效考核系数的总位数)连接起来,这条线段只管描绘了绩效考核系数随年份的变化走势。可以认为,绩效考核系数跟年份之间是一种高度波动关系,从2000年开始到2010年,被观测的客户经理多的绩效考核系数先下降又上升,再下降又上升,又下降。
graph twoway mband coefficient year || scatter coefficient year||,by(region) #本命令的含义是以事业部为分类对数据进行非参数回归,并且绘制年份与绩效考核系数之间的散点图
从图中可以看出北方事业部和南方事业部的绩效考核系数的整体走势是很相近的,但是南方事业部的波动要相对平滑一些。
lowess coefficient year if region == 1 #本命令是对数据进行修匀,这是非参数回归的另外一种重要形式
从图中我们可以看出,在修匀的情况下绩效考核系数一直绕着一条值约为