调节变量与中介变量介绍

阅读全文:调节变量与中介变量介绍 (lianxh.cn)

作者:赵雨鑫 (吉林大学)
邮箱2471814525@qq.com

1. 调节变量

1.1 调节变量的意义

调节变量所解释的不是关系内部的机制,而是一个关系在不同的条件下是否会有所变化。调节变量的一个主要作用是为现有的理论划出限制条件和适用范围。因此,在研究调节变量时,我们正是通过研究一组关系在不同条件下的变化及其背后的原因,来丰富原有的理论。

1.2 调节变量的原理

什么是调节变量?简单来说,如果变量 XX 与变量 YY 有关系,但是 XX 与 YY 的关系受第三个变量 ZZ 的影响,那么变量 ZZ 就是调节变量。调节变量所起的作用称为调节作用。

例如,当研究工作与家庭的冲突对职业满意度的影响时,普遍认为工作与家庭冲突越大,职业满意度应该是越差的。Martins 等 (2002) 在这个基础上考虑了性别,结果发现:对于女性来说,这个关系在任何年龄段都显著;但是对于男性来说,这个关系仅在职业生涯后期才成立,也就是男性年轻的时候,工作与家庭的冲突对职业满意度不会有影响。

在这个研究中,性别就是一个调节变量,因为对于不同性别的群体 (调节变量) ,工作与家庭的冲突 (自变量) 和职业满意度 (因变量) 之间的关系也不同。

好的调节变量本身应该比较稳定,或者其变动是外生的,不受 XX 和 YY 的影响。

当研究中有调节变量时,在研究假设中一定要说清楚,到底这个调节变量的作用是什么、具体如何影响变量的关系。研究假设的提出应该尽量准确,我们不应该笼统地假设“ZZ 在 XX 与 YY 的关系中起到了调节作用”,应该具体说明 ZZ 是如何调节 XX 和 YY 的关系的。例如“当 ZZ 高的时候,XX 对 YY 会有正面的影响;当 ZZ 低的时候,XX 会对 YY 有负面的影响”。

1.3 检验调节的方法

检验调节变量最普遍的方法是多元调节回归分析 (moderated multiple regression,MMR),具体步骤如下:

1.3.1 用虚拟变量代表类别变量

如果自变量或调节变量中有一个是类别变量,那么第一步首先是将类别变量转换为虚拟变量。所需的虚拟变量的数目等于类别变量的水平个数减 1。研究者可以根据不同的研究问题选择不同的编码方法。

1.3.2 对连续变量进行中心化或标准化

用回归的方法检验调节变量的一个重要步骤就是把自变量和调节变量中的连续变量进行整理。一些统计学家建议把这些变量进行中心化,即用这个变量中的每个数据点减去均值,使得新得到的数据样本均值为 0。

这是因为预测变量和调节变量往往与他们的乘积项高度相关。中心化的目的是减小回归方程中变量间多重共线性的问题。当然,也可以对连续型的自变量和调节变量进行标准化 (如使用 Z 分数),作用基本相同。

1.3.3 构造乘积项

构造乘积变量时,只需要把经过编码或中心化 (或标准化) 处理以后的自变量和调节变量相乘即可。

Y=b0+b1X+b2M+b3Xc∗Mc(1)Y=b0​+b1​X+b2​M+b3​Xc​∗Mc​(1)

注:XcXc​ 和 McMc​ 表示经过中心化处理后的变量。

如果使用了虚拟变量,那么每一个虚拟变量都应该有一个相应的乘积变量。比如,如果用一个虚拟变量表示包含两个水平的一个类别变量,那么就有一个乘积项;如果用两个虚拟变量表示包含三个水平的一个类别变量,那么就有两个乘积项)。

Y=b0+b1X+b2D1+b3D2+b4Xc∗D1+b5Xc∗D2(2)Y=b0​+b1​X+b2​D1​+b3​D2​+b4​Xc​∗D1​+b5​Xc​∗D2​(2)

1.3.4 构造方程

构造出乘积项后,把自变量、因变量 (这里要使用未中心化的自变量和因变量) 和乘积项都放到多元回归方程中就可以检验交互作用了。这时,我们最关注的是乘积项的系数是否显著。如果显著,就可以说明调节作用的存在了。

需要指出的是,既然检验调节作用的时候,只需要看乘积项就可以了,那么为何回归方程中还要有前面“主效应”的项目呢?主要原因是在回归方程中凡是有二阶变量的话,所有的一阶变量都应该被包括。

 阅读全文:调节变量与中介变量介绍 (lianxh.cn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值