7-4四种模型的解释_虚拟变量的设置以及交互项的解释

什么时候取对数

一、伍德里奇的取对数规则:

为了解决

(1)减弱数据的异方差性

(2)如果变量本身不符合正态分布,取 了对数后可能渐近服从正态分布

(3)模型形式的需要,让模型具有经济学意义。

采用四种规则:

(1)与市场价值相关的,例如,价格、销售额、工资等都可以取对数;

(2)以年度量的变量,如受教育年限、工作经历等通常不取对数;

(3)比例变量,如失业率、参与率等,两者均可;

(4)变量取值必须是非负数,如果包含0,则可以对y取对数ln(1+y);

二、四类模型回归系数

1、一元线性回归:𝑦 = 𝑎 + 𝑏𝑥 + 𝜇,x每增加1个单位,y平均变化b个单位;

2、双对数模型:𝑙𝑛𝑦 = 𝑎 + 𝑏𝑙𝑛𝑥 + 𝜇,x每增加1%,y平均变化b%;

3、半对数模型:𝑦=𝑎 + 𝑏𝑙𝑛𝑥 + 𝜇,x每增加1%,y平均变化b/100个单位;

4、半对数模型:𝑙𝑛𝑦 = 𝑎 + 𝑏𝑥 + 𝜇,x每增加1个单位,y平均变化(100b)%。

小批注:

以上四类模型回归都可以用求导和微分方程给出。

例如:𝑙𝑛𝑦 = 𝑎 + 𝑏𝑙𝑛𝑥 + 𝜇 左右式求导得出\frac{1}{y}b\frac{1}{x},那么​​​​​如果乘dy与dx,则表示双方的

量,而由原公式得知,双方变化量相等,即自变量y与x变化dy与dxln(y+\Delta y)-lny=bln(x+\Delta x)-blnx

当然,高数里也有此类内容的证明,那个应该是证明隐函数求导法则的,结果一样。

三、虚拟变量的解释

例如用1表示Female,0表示Male,将E代表薪水,有如下公式:

E_{M}=\beta _{_{0}}+\delta _{0}\times 1+\beta _{1} X_{1}+\beta _{2} X_{2}.....+\mu _{i}

E_{F}=\beta _{_{0}}+\delta _{0}\times 0+\beta _{1} X_{1}+\beta _{2} X_{2}.....+\mu _{i}

以其他变量当作与性别无关的变量(例如职业能力,学历,智商等。前提是与性别无关),则\delta _{0}的正负就可以表示性别的差异工资,代表了每个小时相差多少钱。

 四、多分类的虚拟变量设置

简化一下

SUCESS表示是否贷款成功 

SUCESS_{i}=\alpha +\beta _{i}Province_{i}+\lambda Control+\varepsilon _{i}

那么根据\beta _{i}相较于内蒙古这一对照组的正负就可以判断是否有地域歧视了。

五、含有交互项的自变量

有某两个自变量相乘共同决定,代表了一个变量产生的效应会受到另一个变量的影响例如:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值