自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 降维之探索性因子分析

有两种常用的变量降维方法,其一是主成分分析(PCA),我们在前面的文章中已学习,这次是其二方法——探索性因子分析(EFA)。PCA使用线性变换技术,将数据从原先的坐标系统变换到新的坐标系统中,并计算投射到各个坐标轴中数据的方差值,按大到小排序,第一坐标轴称为第一主成分,第二坐标轴称为第二主成分,以此类推。如此操作之后,因为主成分之间相互不相关,就解决了原始变量之间存在的信息重叠问题,用较少的新的变量最大化地对原始数据重新进行刻画,极大方便了后续的数据分析。

2023-11-21 14:10:32 398 1

原创 广义线性模型之泊松回归

前面文章我们学习过Logistic回归,这次我们来学习广义线性模型框架下的泊松回归(Poisson regression),它的应变量为计数类型。在线性模型中,我们通常假设应变量Y呈正态分布,其条件均值是自变量的线性组合,即对于一系列自变量X,赋予X相应的权重,然后把它们加起来,便可预测Y可能分布的均值。而广义线性模型中的应变量Y'是条件均值Y的函数(称作连接函数),此时可放松对Y是正态分布的要求,只要其服从指数分布族中的一种分布(如二项分布、伽玛分布、泊松分布等)即可。

2023-10-20 10:37:17 553 1

原创 非参检验之置换检验

置换检验(Permutation test)是属于非参检验的一种方法,特别适用于总体分布未知的小样本数据。在参数方法中,对于两种实验处理条件,我们一般假设两个总体为正态且方差齐性,然后使用双尾t检验来验证两者是否存在差异。通常零假设为两个总体的均值相等,接着计算t值,将其与理论分布相比较,如果t值落在95%置信区间之外,那么就可以拒绝零假设。置换检验的思路有些不一样,我们先来看一个例子(来自参考文章1)。

2023-10-13 10:48:59 846

原创 初探R之demo(graphics)

demo(graphics)演示函数带graphics参数可以向我们展示R中代码是如何编写的,以及呈现的图形都有哪些样式。总共11组代码和图形,包括基础绘图包中的高级绘图函数pie、boxplot、hist、coplot等,以及低级绘图函数polygon、rect、axis、pairs等。

2023-10-12 09:55:36 219

原创 初探R之数据结构和列联表

原文链接:初探R之数据结构和列联表从问卷研究或是实验研究中获得数据后,可以通过专门的函数导入到R中,R全面支持各种类型的数据来源,如Excel文件、SPSS文件、数据库等。而R又有哪些数据结构可以用来存储各式各样的数据呢,这是本文要学习的重点。列联表是数据分析的基础,我们以二维列联表为例演示了卡方独立性检验的操作。

2023-10-11 10:33:51 180

原创 知识点之Logistic回归和效应量

原文链接:知识点之Logistic回归和效应量Logistic回归和效应量在前面的文章中已有所学习,见:广义线性模型之Logistic回归、看文献之期望和记忆如何影响经济决策(重复测量方差分析部分)、到底需要多少样本量(效应量部分)。这次对困扰本人的一些难点重新查阅了些资料,借机做进一步的思考和探讨。

2023-10-10 14:27:53 396 1

原创 多元线性逐步回归

原文链接:多元线性逐步回归实际问题中,影响因变量Y的因素有很多,人们需要挑选若干变量来建立回归方程,但是要如何选择变量呢?有时我们会漏掉重要的自变量,那么所建立的方程意义就不大;有时又想囊括更多的自变量,此举会导致预测精度的下降,。要建立“最优”的回归方程,我们需要从可供选择的所有变量中挑选出对Y有显著影响的变量,并且剔除其它无显著影响的变量。“逐步回归法”是较为常用的一种方法。它有三种实现策略:正向选择、后向选择和逐步选择。一般所说的逐步回归指的是最后一种,它结合了前两种方式的优点。

2023-10-09 14:25:53 275 1

原创 中介变量和调节变量分析

原文链接:中介变量和调节变量分析中介变量和调节变量都与回归分析有关,可以通过逐步回归来分析。中介效应分为完全中介和部分中介。完全中介是指中介变量M控制后(保持不变),自变量X的直接效应就没有了,相当于水流全都要经过M再到达Y;而部分中介在此种情况下,X的效应只是减弱了,但不是完全消失,相当于还存在X到Y的流通管道。调节变量指出自变量在何种情况下会影响到因变量,它为变量之间的关系提供情境性的解释。

2023-10-08 15:51:42 4160

原创 使用模拟方法玩转统计推断

然而,实际情况是,抽样的数量很有限,而且抽样难免会产生误差,因此抽样结果有时会正确拒绝H0,有时又会落入误区(下图蓝色β区域)[2]。我们先从上帝的视角来展示下“真实数据”:X的回归系数为3.6,M的回归系数为0.6,X和M交互作用的回归系数为1.2,Y的标准差为8。这里的是否显著指的是非零检验的结果,即参数估计值的置信区间是否包含零。当零假设H0为假时,只要样本的数量无限接近总体的数量,那么肯定的一个结果是H0会被拒绝。至于到底需要多少的样本量,是可以通过所设定的统计功效和效应量计算出来的。

2023-10-07 12:54:30 263 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除