变量三兄弟之一:调节变量

在一门专业课上发现自己对于调节变量的理解还不够清楚,因此花了点时间学习了《中介效应和调节效应的、方法及应用》里关于调节效应的部分,并做了简单的整理。

经过整理发现,用一句话来表达调节变量的作用就是,A对B的影响本来不显著,但是考虑到调节变量的情况之后就变得显著了,有点数学里分类讨论的意思。

1.定义

如果变量Y与变量X的关系是变量M 的函数,称M 为调节变量。就是说, Y与X 的关系受到第三个变量M 的影响。

可以将调节变量当成一个情境,在M情境下,X对Y的影响,这样更有利于理解。

2.变量类型

定性or定量。调节变量既可以是性别、班级这种定性的变量,也可以是年龄、成绩这种定量的变量。

3.调节模型

Y = aX + bM + cXM + e 

4.示意图和路径图

图片

5.调节效应和交互效应

01

相同之处

对模型中调节效应的分析主要是估计和检验c。如果c显著(即H0∶c = 0的假设被拒绝) ,说明M 的调节效应显著。熟悉交互效应( interactioneffect)的读者可以从模型看出, c其实代表了X与M 的交互效应,所以这里的调节效应就是交互效应。这样,调节效应与交互效应从统计分析的角度看可以说是一样的。

02

不同之处

在交互效应分析中,两个自变量的地位可以是对称的,其中任何一个都可以解释为调节变量;也可以是不对称的,只要其中有一个起到了调节变量的作用,交互效应就存在。但在调节效应中,哪个是自变量,哪个是调节变量,是很明确的,在一个确定的模型中两者不能互换。

6.调节效应分析方法

调节变量M

自变量X

类别变量

连续变量

类别变变量量

有变量交互效应的两因素方差分析(此时交互即调节变量)

法1:分组回归,按的取值分组,做Y对X的回归。若回归系数的差异显著,则调节效应显著。

法2:调节变量使用虚拟变量,将自变量和调节变量中心化,做层次回归。(同左栏)

连续变量

自变量使用虚拟变量,并将自变量和调节变量中心化,做Y = aX + bM + cXM + e的层次回归。如果 MX的系数c显著,则调节效应显著。

将自变量和调节变量中心化,做层次回归。

除了考虑交互效应项MX外,还可以考虑高阶交互效应项(如:M2X)表示非线性调节效应;MX2,表示曲线回归的调节)。

7.参考文献

温忠麟,侯杰泰,张雷.调节效应与中介效应的比较和应用[J].心理学报,2005,(02):268-274.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值