作者:连玉君
1. 简介
在前面的几篇推文中,我们对交乘项的基本设定、图示、边际效应分析等内容进行了较为细致的分析。最近适逢很多学生写毕业论文,有关交乘项的问题又涌上心头。其中,最突出的问题便是:为何加入交乘项后主变量变得不显著了,甚至符号都变掉了?
简单的解释是:此一时,彼一时!
因为,加入交乘项前后,主变量的系数含义发生了实质性的变化,二者不具可比性。本文的目的在于澄清这种差异,并介绍一种让主变量系数在加入交乘项前后不会发生大幅变化 (具有可比性) 的方法。
2. 为何加入交乘项后主变量符号会变化?
对于模型
y = β 0 + β 1 x 1 + β 2 x 2 + ϵ 1 ( 1 ) y = \beta_0 + β_1x_1 + β_2x_2 + \epsilon_1 \qquad (1) y=β0+β1x1+β2x2+ϵ1(1)
系数 β 1 = ∂ y / ∂ x 1 ∣ x 2 = x ˉ 2 \beta_1=\partial{y}/\partial{x_1} | x_2=\bar{x}_2 β1=∂y/∂x1∣x2=xˉ2,也就是当 x 2 x_2 x2 取样本均值时, x 1 x_1 x1 变动一个单位对 y y y 的影响。
当我们加入交乘项 x 1 x 2 x_1 x_2 x1x2 后, x 1 x_1 x1 的系数含义发生了很大的变化。
y = θ 0 + θ 1 x 1 + θ 2 x 2 + θ 3 x 1 x 2 + ϵ 2 ( 2 ) y = \theta_0 + \theta_1x_1 + \theta_2x_2 + \theta_3 x_1 x_2 + \epsilon_2 \qquad (2) y=θ0+θ1x1+θ2x2+θ3x1x2+ϵ2(2)
先看 x 1 x_1 x1 对 y y y 的边际影响: ∂ y / ∂ x 1 = θ 1 + θ 3 x 2 \partial{y}/\partial{x_1}=\theta_1+ \theta_3 x_2 ∂y/∂x1=θ1+θ3x