加入交乘项后符号变了!?

本文探讨了在加入交乘项后主变量的符号和显著性变化的原因,指出这是因为系数含义的变化。通过模型设定,如使用离差形式 `(x1-xˉ1)(x2-xˉ2)`,可以尽量保持模型间系数的可比性。模拟分析显示,这种方法使一阶项的系数更易于解释。结论建议在关注交乘项系数时,可以使用不同模型形式,以便于理解和比较结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:连玉君

Stata 连享会: 知乎 | 简书 | 码云 | CSDN

1. 简介

在前面的几篇推文中,我们对交乘项的基本设定、图示、边际效应分析等内容进行了较为细致的分析。最近适逢很多学生写毕业论文,有关交乘项的问题又涌上心头。其中,最突出的问题便是:为何加入交乘项后主变量变得不显著了,甚至符号都变掉了?

简单的解释是:此一时,彼一时!

因为,加入交乘项前后,主变量的系数含义发生了实质性的变化,二者不具可比性。本文的目的在于澄清这种差异,并介绍一种让主变量系数在加入交乘项前后不会发生大幅变化 (具有可比性) 的方法。

2. 为何加入交乘项后主变量符号会变化?

对于模型

y = β 0 + β 1 x 1 + β 2 x 2 + ϵ 1 ( 1 ) y = \beta_0 + β_1x_1 + β_2x_2 + \epsilon_1 \qquad (1) y=β0+β1x1+β2x2+ϵ1(1)

系数 β 1 = ∂ y / ∂ x 1 ∣ x 2 = x ˉ 2 \beta_1=\partial{y}/\partial{x_1} | x_2=\bar{x}_2 β1=y/x1x2=xˉ2,也就是当 x 2 x_2 x2 取样本均值时, x 1 x_1 x1 变动一个单位对 y y y 的影响。

当我们加入交乘项 x 1 x 2 x_1 x_2 x1x2 后, x 1 x_1 x1 的系数含义发生了很大的变化。

y = θ 0 + θ 1 x 1 + θ 2 x 2 + θ 3 x 1 x 2 + ϵ 2 ( 2 ) y = \theta_0 + \theta_1x_1 + \theta_2x_2 + \theta_3 x_1 x_2 + \epsilon_2 \qquad (2) y=θ0+θ1x1+θ2x2+θ3x1x2+ϵ2(2)

先看 x 1 x_1 x1 y y y 的边际影响: ∂ y / ∂ x 1 = θ 1 + θ 3 x 2 \partial{y}/\partial{x_1}=\theta_1+ \theta_3 x_2 y/x1=θ1+θ3x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值