李宏毅ML lecture-1,2,3 线性回归及梯度下降

线性回归(Linear regression)

简单来说,就是给一组含有 N N N个数据的集合 s e t set set,包括输入 x x x和输出 t t t,找出生成这组数据的函数,用这个函数预测下一个数据所产生的输出.因为不知道函数长什么样子,可以假定为最简单的线性函数:
(1) y = w 1 x 1 + . . . + w D x D + b y=w_1x_1+...+ w_D x_D+b \tag{1} y=w1x1+...+wDxD+b(1)
将上述式子转换为矩阵运算:
(2) W = [ w 1 w 2 . . . w D ] X = [ x 1 x 2 . . . x D ] y = W T X + b W=\left[ \begin{matrix} w_1\\w_2\\...\\w_D \end{matrix} \right] X=\left[ \begin{matrix} x_1\\x_2\\...\\x_D \end{matrix} \right] y=W^TX+b \tag{2} W=w1w2...wDX=x1x2...xDy=WTX+b(2)

损失函数( loss function)

给出线性函数后,随机初始化 W W W,输入 X X X得到 y y y,而真实的输出应该是 t t t,所以得到直觉上的平方损失函数:

平方损失(square loss)

(3) L W , b = 1 2 N ∑ n = 1 N ( t n − y n ) 2 L_{W,b}=\frac{1}{2N}\sum_{n=1}^{N}(t_n-y_n)^2 \tag{3} LW,b=2N1n=1N(tnyn)2(3)
现在的目标就是使平方损失函数 L L L最小.
这个时候就涉及到梯度下降算法(Gradient Descent)
梯度下降算法
(4) W ∗ = * ⁡ a r g m i n W L W , b W^* = \operatorname*{argmin}_{W}L_{W,b} \tag{4} W=*argminWLW,b(4)
(4) b ∗ = * ⁡ a r g m i n b L W , b b^* = \operatorname*{argmin}_{b}L_{W,b} \tag{4} b=*argminbLW,b(4)
这个时候,当 x x x确定时,则 w w w为自变量,为了找到让 L L L最小的 W W W b b b.就需要让 W W W b b b沿着 L L L的下降路线变化.
变化速度最快的方向就是 W W W L L L的梯度 ∂ L ∂ W \frac{\partial L}{\partial W} WL记为 d W dW dW以及 b b b L L L的梯度 ∂ L ∂ b \frac{\partial L}{\partial b} bL记为 d b db db.
PS:这个问题比较复杂,建议看视频或者别人的文章,这里就简单记一下.

学习率(Learning rate)

W = W − η d W b = b − η d b W = W - \eta dW\\ b = b- \eta db\\ W=WηdWb=bηdb
其中 η \eta η为学习率,也就是参数沿某个方向变化的步长.
η \eta η的选取有若干方法.学习率的设置的目标就是让参数在远的位置变化大,近的位置变化小.

momentum

decay

nesterov

RMSprop

Adagrad

Adadelta

Adam

Adamax

Nadam

偏执bias和方差variance

正则化(regularization)

在线性回归训练中,可以轻松让正确率达到100%,只需要让x数量D大于set集数量N.
但是如果你这样做,必然会导致在测试集准确率远低于训练集准确率,这就是过拟合(over-fitting).
更细致的内容涉及到偏差和方差.
这里列出线性回归训练可以用到的正则化方法.

参数范式惩罚

early stoping

数据预处理(data preprocessing)

在训练得不到提升以及涉及到过拟合时,可以考虑应用下述方法,往往,不需要考虑,先用了再说.

归一化(Normalization)

标准化(Standardization)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值