1)
已知直线上的两点P1(X1,Y1) P2(X2,Y2), P1 P2两点不重合。则直线的一般式方程AX+BY+C=0中,A B C分别等于:
A = Y2 - Y1
B = X1 - X2
C = X2*Y1 - X1*Y2
2)
设:A(x1,y1),B(x2,y2),点P(x,y)分线段AB所成的比是λ,则:
x=[x1+λx2]/(1+λ)
y=[y1+λy2]/(1+λ)
3)
pt0到 pt1->pt2的直线距离
直线(一般式):Ax+By+C=0坐标(Xo,Yo),那么这点到这直线的距离就为:
(AXo+BYo+C)的绝对值除以根号下(A的平方加上B的平方)
4)
直线l1:a1x+b1y+c1=0 直线l2:a2x+b2y+c2=0,
交点坐标为((b1c2-b2c1)/(a1b2-a2b1),(a2c1-a1c2)/(a1b2-a2b1))