柱坐标系下的ns方程_柱坐标系和球坐标系下N-S方程的直接推导

Derivation of 3D Euler and Navier-Stokes Equations

in Cylindrical Coordinates

Contents

1. Derivation of 3D Euler Equation in Cylindrical coordinates

2. Derivation of Euler Equation in Cylindrical coordinates moving at

in tangential direction

3. Derivation of 3D Navier-Stokes Equation in Cylindrical Coordinates

1. Derivation of 3D Euler Equation in Cylindrical coordinates

Euler Equation in Cartesian coordinates

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
圆柱坐标系下的 N-S 方程是描述流体在圆柱坐标系下的运动状态的方程。它包括连续性方程、动量方程和能量方程,其中动量方程包括雷诺应力项。 下面给出圆柱坐标系下的 N-S 方程: 连续性方程: $$\frac{\partial \rho}{\partial t}+\frac{1}{r}\frac{\partial}{\partial r}(r\rho u)+\frac{1}{r}\frac{\partial}{\partial \theta}(\rho v)+\frac{\partial}{\partial z}(\rho w)=0$$ 动量方程: $$\frac{\partial}{\partial t}(\rho u)+\frac{1}{r}\frac{\partial}{\partial r}(\rho u^2)+\frac{1}{r}\frac{\partial}{\partial \theta}(\rho u v)+\frac{\partial}{\partial z}(\rho u w)=-\frac{\partial p}{\partial r}+\frac{\tau_{rr}}{\rho r}-\frac{\tau_{\theta r}}{\rho r}-\frac{\tau_{zr}}{\rho}+F_r$$ $$\frac{\partial}{\partial t}(\rho v)+\frac{1}{r}\frac{\partial}{\partial r}(\rho uv)+\frac{1}{r}\frac{\partial}{\partial \theta}(\rho v^2)+\frac{\partial}{\partial z}(\rho v w)=-\frac{1}{r}\frac{\partial p}{\partial \theta}-\frac{\tau_{r\theta}}{\rho r}-\frac{\tau_{\theta \theta}}{\rho r}-\frac{\tau_{z\theta}}{\rho}+F_\theta$$ $$\frac{\partial}{\partial t}(\rho w)+\frac{1}{r}\frac{\partial}{\partial r}(\rho uw)+\frac{1}{r}\frac{\partial}{\partial \theta}(\rho vw)+\frac{\partial}{\partial z}(\rho w^2)=-\frac{\partial p}{\partial z}-\frac{\tau_{rz}}{\rho r}-\frac{\tau_{\theta z}}{\rho r}-\frac{\tau_{zz}}{\rho}+F_z$$ 其中,$\rho$ 是流体密度,$u,v,w$ 分别是流体在 $r,\theta,z$ 三个方向上的速度分量,$p$ 是流体压力,$\tau_{ij}$ 是雷诺应力张量,$F_r,F_\theta,F_z$ 是外力对流体的作用力。 雷诺应力张量是描述湍流效应的一种物理量,它表示流体中不同位置处的速度差异会产生的附加应力。在圆柱坐标系下,雷诺应力张量的各个分量可以表示为: $$\tau_{rr}=-2\mu\frac{\partial u}{\partial r}-\frac{2}{3}\mu(\frac{\partial u}{\partial r}+\frac{2}{r}u)$$ $$\tau_{\theta r}=-\mu(\frac{\partial v}{\partial r}+\frac{\partial u}{\partial \theta}-\frac{v}{r})$$ $$\tau_{zr}=-\mu(\frac{\partial w}{\partial r}+\frac{\partial u}{\partial z})$$ $$\tau_{r\theta}=-\mu(\frac{1}{r}\frac{\partial u}{\partial \theta}+\frac{\partial v}{\partial r}-\frac{u}{r})$$ $$\tau_{\theta \theta}=-2\mu\frac{\partial v}{\partial \theta}-\frac{2}{3}\mu(\frac{\partial v}{\partial \theta}-\frac{u}{r})$$ $$\tau_{z\theta}=-\mu(\frac{\partial v}{\partial z}+\frac{1}{r}\frac{\partial w}{\partial \theta})$$ $$\tau_{rz}=-\mu(\frac{\partial w}{\partial z}+\frac{\partial u}{\partial r})$$ 其中,$\mu$ 是流体的动力粘度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值