请看下面的实例,功能是在IMDB大型电影评论数据集上训练循环神经网络,以进行情感分析。
实例5-2:使用电影评论数据集制作情感分析模型(源码路径:daima\5\xun03.py)
实例文件xun03.py的具体实现流程如下:
(1)导入matplotlib并创建一个辅助函数来绘制计算图,代码如下:
import matplotlib.pyplot as plt
def plot_graphs(history, metric):
plt.plot(history.history[metric])
plt.plot(history.history['val_'+metric], '')
plt.xlabel("Epochs")
plt.ylabel(metric)
plt.legend([metric, 'val_'+metric])
plt.show()
(2)设置输入流水线,IMDB 大型电影评论数据集是一个二进制分类数据集——所有评论都具有正面或负面情绪。使用 TFDS下载数据集,代码如下:
dataset, info = tfds.load('imdb_reviews/subwords8k', with_info=True,
as_supervised=True)
train_dataset, test_dataset = dataset['train'], dataset['test']
执行后会输出:
WARNING:absl:TFDS datasets with text encoding are deprecated and will be removed in a future version. Instead, you should use the plain text version and tokenize the text using `tensorflow_text` (See: https://www.tensorflow.org/tutorials/tensorflow_text/intro#tfdata_example)
Downloading and preparing dataset imdb_reviews/subwords8k/1.0.0 (download: 80.23 MiB, generated: Unknown size, total: 80.23 MiB) to /home/kbuilder/tensorflow_datasets/imdb_reviews/subwords8k/1.0.0...
Shuffling and writing examples to /home/kbuilder/tensorflow_datasets/imdb_reviews/subwords8k/1.0.0.incomplete7GBYY4/imdb_reviews-train.tfrecord
Shuffling and writing examples to /home/kbuilder/tensorflow_datasets/imdb_reviews/subwords8k/1.0.0.incomplete7GBYY4/imdb_reviews-test.tfrecord
Shuffling and writing examples to /home/kbuilder/tensorflow_datasets/imdb_reviews/subwords8k/1.0.0.incomplete7GBYY4/imdb_reviews-unsupervised.tfrecord
Dataset imdb_reviews downloaded and prepared to /home/kbuilder/tensorflow_datasets/imdb_re
在数据集 info 中包括编码器 (tfds.features.text.SubwordTextEncoder),代码如下:
encoder = info.features['text'].encoder
print('Vocabulary size: {}'.format(encoder.vocab_size))
执行后会输出:
Vocabulary size: 8185
此文本编码器将以可逆方式对任何字符串进行编码,并在必要时退回到字节编码。代码如下:
sample_string = 'Hello TensorFlow.'
encoded_string = encoder.encode(sample_string)
print('Encoded string is {}'.format(encoded_string))
original_string = encoder.decode(encoded_string)
print('The original string: "{}"'.format(original_string))
执行后会输出:
Vocabulary size: 8185
此文本编码器将以可逆方式对任何字符串进行编码,并在必要时退回到字节编码。代码如下:
sample_string = 'Hello TensorFlow.'
encoded_string = encoder.encode(sample_string)
print('Encoded string is {}'.format(encoded_string))
original_string = encoder.decode(encoded_string)
print('The original string: "{}"'.format(original_string))
assert original_string == sample_string
for index in encoded_string:
print('{} ----> {}'.format(index, encoder.decode([index])))
执行后会输出:
Encoded string is [4025, 222, 6307, 2327, 4043, 2120, 7975]
The original string: "Hello TensorFlow."
4025 ----> Hell
222 ----> o
6307 ----> Ten
2327 ----> sor
4043 ----> Fl
2120 ----> ow
7975 ----> .
(3)开始准备用于训练的数据,创建这些编码字符串的批次。使用 padded_batch 方法将序列零填充至批次中最长字符串的长度,代码如下:
BUFFER_SIZE = 10000
BATCH_SIZE = 64
train_dataset = train_dataset.shuffle(BUFFER_SIZE)
train_dataset = train_dataset.padded_batch(BATCH_SIZE)
test_dataset = test_dataset.padded_batch(BATCH_SIZE)
(4)开始创建模型,构建一个 tf.keras.Sequential 模型并从嵌入向量层开始。嵌入向量层每个单词存储一个向量。调用时,它会将单词索引序列转换为向量序列。这些向量是可训练的。(在足够的数据上)训练后,具有相似含义的单词通常具有相似的向量。与通过 tf.keras.layers.Dense 层传递独热编码向量的等效运算相比,这种索引查找方法要高效得多。
循环神经网络 (RNN) 通过遍历元素来处理序列输入。RNN 将输出从一个时间步骤传递到其输入,然后传递到下一个步骤。tf.keras.layers.Bidirectional 包装器也可以与 RNN 层一起使用,这将通过 RNN 层向前和向后传播输入,然后连接输出,这有助于 RNN 学习长程依赖关系。代码如下:
model = tf.keras.Sequential([
tf.keras.layers.Embedding(encoder.vocab_size, 64),
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64)),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(1)
])
请注意,在这里选择 使用的是Keras 序贯模型,因为模型中的所有层都只有单个输入并产生单个输出。如果要使用有状态 RNN 层,则可能需要使用 Keras 函数式 API 或模型子类化来构建模型,以便可以检索和重用 RNN 层状态。有关更多详细信息,请参阅 Keras RNN 指南。
(5)编译 Keras 模型以配置训练过程,代码如下:
model.compile(loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
optimizer=tf.keras.optimizers.Adam(1e-4),
metrics=['accuracy'])
history = model.fit(train_dataset, epochs=10,
validation_data=test_dataset,
validation_steps=30)
执行后会输出:
Epoch 1/10
391/391 [==============================] - 41s 105ms/step - loss: 0.6363 - accuracy: 0.5736 - val_loss: 0.4592 - val_accuracy: 0.8010
Epoch 2/10
391/391 [==============================] - 41s 105ms/step - loss: 0.3426 - accuracy: 0.8556 - val_loss: 0.3710 - val_accuracy: 0.8417
Epoch 3/10
391/391 [==============================] - 42s 107ms/step - loss: 0.2520 - accuracy: 0.9047 - val_loss: 0.3444 - val_accuracy: 0.8719
Epoch 4/10
391/391 [==============================] - 41s 105ms/step - loss: 0.2103 - accuracy: 0.9228 - val_loss: 0.3348 - val_accuracy: 0.8625
Epoch 5/10
391/391 [==============================] - 42s 106ms/step - loss: 0.1803 - accuracy: 0.9360 - val_loss: 0.3591 - val_accuracy: 0.8552
Epoch 6/10
391/391 [==============================] - 42s 106ms/step - loss: 0.1589 - accuracy: 0.9450 - val_loss: 0.4146 - val_accuracy: 0.8635
Epoch 7/10
391/391 [==============================] - 41s 105ms/step - loss: 0.1466 - accuracy: 0.9505 - val_loss: 0.3780 - val_accuracy: 0.8484
Epoch 8/10
391/391 [==============================] - 41s 106ms/step - loss: 0.1463 - accuracy: 0.9485 - val_loss: 0.4074 - val_accuracy: 0.8156
Epoch 9/10
391/391 [==============================] - 41s 106ms/step - loss: 0.1327 - accuracy: 0.9555 - val_loss: 0.4608 - val_accuracy: 0.8589
Epoch 10/10
391/391 [==============================] - 41s 105ms/step - loss: 0.1666 - accuracy: 0.9404 - val_loss: 0.4364 - val_accuracy: 0.8422
(6)查看损失,代码如下:
test_loss, test_acc = model.evaluate(test_dataset)
print('Test Loss: {}'.format(test_loss))
print('Test Accuracy: {}'.format(test_acc))
执行后会输出:
391/391 [==============================] - 17s 43ms/step - loss: 0.4305 - accuracy: 0.8477
Test Loss: 0.43051090836524963
Test Accuracy: 0.8476799726486206
上面的模型没有遮盖应用于序列的填充。如果在填充序列上进行训练并在未填充序列上进行测试,则可能导致倾斜。理想情况下,您可以使用遮盖来避免这种情况,但是正如在下面看到的那样,它只会对输出产生很小的影响。如果预测 >= 0.5,则为正,否则为负。代码如下:
def pad_to_size(vec, size):
zeros = [0] * (size - len(vec))
vec.extend(zeros)
return vec
def sample_predict(sample_pred_text, pad):
encoded_sample_pred_text = encoder.encode(sample_pred_text)
if pad:
encoded_sample_pred_text = pad_to_size(encoded_sample_pred_text, 64)
encoded_sample_pred_text = tf.cast(encoded_sample_pred_text, tf.float32)
predictions = model.predict(tf.expand_dims(encoded_sample_pred_text, 0))
return (predictions)
#在没有填充的示例文本上进行预测。
sample_pred_text = ('The movie was cool. The animation and the graphics '
'were out of this world. I would recommend this movie.')
predictions = sample_predict(sample_pred_text, pad=False)
print(predictions)
执行后会输出:
[[-0.11829309]]
(7)使用填充对示例文本进行预测,代码如下:
sample_pred_text = ('The movie was cool. The animation and the graphics '
'were out of this world. I would recommend this movie.')
predictions = sample_predict(sample_pred_text, pad=True)
print(predictions)
执行后会输出:
[[-1.162545]]
(8)编写可视化代码,
plot_graphs(history, 'accuracy')
plot_graphs(history, 'loss')
执行后分别绘制accuracy曲线图和loss曲线图,如图5-3所示。
图5-3 可视化效果
(9)开始堆叠两个或更多 LSTM 层,Keras 循环层有两种可用的模式,这些模式由 return_sequences 构造函数参数控制:
- 返回每个时间步骤的连续输出的完整序列(形状为 (batch_size, timesteps, output_features) 的 3D 张量)。
- 仅返回每个输入序列的最后一个输出(形状为 (batch_size, output_features) 的 2D 张量)。
代码如下:
model = tf.keras.Sequential([
tf.keras.layers.Embedding(encoder.vocab_size, 64),
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64, return_sequences=True)),
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(1)
])
model.compile(loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
optimizer=tf.keras.optimizers.Adam(1e-4),
metrics=['accuracy'])
history = model.fit(train_dataset, epochs=10,
validation_data=test_dataset,
validation_steps=30)
执行后会输出:
Epoch 1/10
391/391 [==============================] - 75s 192ms/step - loss: 0.6484 - accuracy: 0.5630 - val_loss: 0.4876 - val_accuracy: 0.7464
Epoch 2/10
391/391 [==============================] - 74s 190ms/step - loss: 0.3603 - accuracy: 0.8528 - val_loss: 0.3533 - val_accuracy: 0.8490
Epoch 3/10
391/391 [==============================] - 75s 191ms/step - loss: 0.2666 - accuracy: 0.9018 - val_loss: 0.3393 - val_accuracy: 0.8703
Epoch 4/10
391/391 [==============================] - 75s 193ms/step - loss: 0.2151 - accuracy: 0.9267 - val_loss: 0.3451 - val_accuracy: 0.8604
Epoch 5/10
391/391 [==============================] - 76s 194ms/step - loss: 0.1806 - accuracy: 0.9422 - val_loss: 0.3687 - val_accuracy: 0.8708
Epoch 6/10
391/391 [==============================] - 75s 193ms/step - loss: 0.1623 - accuracy: 0.9495 - val_loss: 0.3836 - val_accuracy: 0.8594
Epoch 7/10
391/391 [==============================] - 76s 193ms/step - loss: 0.1382 - accuracy: 0.9598 - val_loss: 0.4173 - val_accuracy: 0.8573
Epoch 8/10
391/391 [==============================] - 76s 194ms/step - loss: 0.1227 - accuracy: 0.9664 - val_loss: 0.4586 - val_accuracy: 0.8542
Epoch 9/10
391/391 [==============================] - 76s 194ms/step - loss: 0.0997 - accuracy: 0.9749 - val_loss: 0.4939 - val_accuracy: 0.8547
Epoch 10/10
391/391 [==============================] - 76s 194ms/step - loss: 0.0973 - accuracy: 0.9748 - val_loss: 0.5222 - val_accuracy: 0.8526
(10)开始进行测试,代码如下:
sample_pred_text = ('The movie was not good. The animation and the graphics '
'were terrible. I would not recommend this movie.')
predictions = sample_predict(sample_pred_text, pad=False)
print(predictions)
sample_pred_text = ('The movie was not good. The animation and the graphics '
'were terrible. I would not recommend this movie.')
predictions = sample_predict(sample_pred_text, pad=True)
print(predictions)
plot_graphs(history, 'accuracy')
plot_graphs(history, 'loss')
此时执行后的可视化效果如图5-4所示。