(3-2)TensorFlow前馈神经网络实战:单层前馈神经网络

3.2  单层前馈神经网络

在生物神经网络中,每个神经元与其他神经元相连,当它“兴奋”时,就会向连接的神经元发送化学物质,从而改变这些神经元内的电位,如果某个神经元的电位超过一个阈值时,便会转变为“兴奋”状态,向其他神经元发送化学物质,两个神经元信号的传递方向是单向的。

3.2.1  单层前馈神经网络介绍

在M-P神经元模型中,如果将多个M-P神经元模型按层连接,就能得到单层前馈神经网络,如下图3-2所示。

图3-2  单层前馈神经网络

单隐层前馈神经网络由输入层、隐含层、输出层组成,可简单模拟生物神经网络,每层神经元与下一层神经元连接,神经元之间不存在跨层连接、同层连接,输入层用于数据的输入,隐含层与输出层神经元对数据进行加工。

3.2.2  BP算法

反向传播(英语:Backpropagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。

反向传播要求用对每个输入值想得到的已知输出,来计算损失函数梯度。因此,它通常被认为是一种监督式学习方法,虽然它也用在一些无监督网络(如自动编码器)中。它是多层前馈网络的Delta规则的推广,可以用链式法则对每层迭代计算梯度。反向传播要求人工神经元(或“节点”)的激励函数可微。

BP算法具有如下所示的两个关键点:

(1)根据输入值获得输出值,计算损失函数的梯度

(2)将梯度反馈给最优化算法(例如梯度下降法),由最优化算法对连接权和阈值进行更新,使得损失函数变小。

在单层前馈神经网络中使用BP算法的过程如图3-3所示。

图3-3  使用BP算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值