4.7 跨模态配对实战:基于深度学习的图文匹配系统
本项目旨在构建一个多模态学习系统,专注于处理图像和文本数据的配对任务,主要基于CUHK-PEDES数据集。本项目实现了多种深度学习模型,包括LSTM、MobileNetV1和ResNet,以分别处理文本和图像特征的提取与融合。通过这些模型的结合,系统能够有效地理解和匹配图像与对应的文本描述,旨在提高图像检索和描述生成的精度。整体架构包括数据处理、模型训练和评估环节,充分利用深度学习技术提升多模态任务的性能。
实例4-30:基于深度学习的图文匹配系统(源码路径:codes\4\Image-Text-Matching)