Dr. LLaMA: Improving Small Language Models in Domain-Specific QAvia Generative Data Augmentation


https://arxiv.org/pdf/2305.07804.pdficon-default.png?t=N3I4https://arxiv.org/pdf/2305.07804.pdf

Our findings indicate that LLMs effectively refine and diversify existing question-answer pairs, resulting in improved performance of a much smaller model on domain-specific QA datasets after fine-tuning.This study highlights the challenges of using LLMs for domain-specific question answering and suggests potential research directions to address these limitations, ultimately aiming to create more efficient and capable models for specialized applications.

Fine-tuning Large Language Models (LLMs) for specific tasks poses computational and time-related challenges (Liu et al., 2022; Vos et al., 2022). To address these issues, researchers have developed efficient fine-tuning techniques, such as Prefix Tuning and Low-rank Adaptation, as alternatives to traditional fine-tuning methods.

 

Generative data augmentation is a vital technique in machine learning for expanding and diversifying training data, ultimately enhancing model generalization (Calimeri et al., 2017; Shao et al., 2019; Sandfort et al., 2019; Shin et al., 2018; Yang et al., 2020; Carlini et al., 2021).

For NLP task, generative data augmentation with LLMs can involve paraphrasing text, creating alternative question-answer pairs, or generating new sentences or paragraphs. Producing diverse representations of input data enables models to learn various ways to express the same underlying concepts, increasing their adaptability to real-world data variations.

However, ensuring the quality and relevance of generated samples is crucial, as low-quality or irrelevant data can negatively impact performance. Additionally, controlling the diversity of generated samples is essential to prevent redundancy or overly similar data points. Thus, generative data augmentation using LLMs in NLP holds promise for improving model generalization and performance while addressing data quality, relevance, and diversity challenges.

Instruction-tuning constrains domain adaptability of language models

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
要计算词汇表中词语的相似性,可以使用余弦相似度来衡量它们之间的相似程度。余弦相似度是通过计算两个向量之间的夹角来度量它们的相似性,夹角越小表示两个向量越相似。 首先,将每个词语的词向量标准化为单位向量,这可以通过将每个向量除以其范数来实现。然后,计算两个词向量之间的点积,即将两个向量的对应元素相乘并求和。最后,将点积除以两个向量的范数的乘积,即可得到它们的余弦相似度。 以计算"狗"和"猫"之间的相似度为例,首先将它们的词向量标准化为单位向量: 狗的标准化向量:\[0.8, 0.2, -0.5\] / sqrt(0.8^2 + 0.2^2 + (-0.5)^2) 猫的标准化向量:\[0.7, 0.3, -0.2\] / sqrt(0.7^2 + 0.3^2 + (-0.2)^2) 然后计算它们的点积: 点积 = 0.8 * 0.7 + 0.2 * 0.3 + (-0.5) * (-0.2) 最后,将点积除以两个向量的范数的乘积: 相似度 = 点积 / (sqrt(0.8^2 + 0.2^2 + (-0.5)^2) * sqrt(0.7^2 + 0.3^2 + (-0.2)^2)) 这样就可以得到"狗"和"猫"之间的相似度。同样的方法可以用于计算其他词语之间的相似度。 #### 引用[.reference_title] - *1* *3* [LLaMA的解读与其微调:Alpaca-LoRA/Vicuna/BELLE/中文LLaMA/姜子牙/LLaMA 2](https://blog.csdn.net/v_JULY_v/article/details/129709105)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [4.Spark特征提取、转换和选择 - 简书](https://blog.csdn.net/weixin_39956182/article/details/111495485)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值