Dr. LLaMA: Improving Small Language Models in Domain-Specific QAvia Generative Data Augmentation

研究发现大型语言模型(LLMs)能有效改进和多样化问题答案对,提升小型模型在领域特定QA数据集上的性能。然而,LLMs在领域适应中面临挑战,需要更多研究来解决限制,以创建更高效的专业应用模型。生成式数据增强是提升模型泛化能力的关键,但必须确保生成样本的质量、相关性和多样性。
摘要由CSDN通过智能技术生成


https://arxiv.org/pdf/2305.07804.pdficon-default.png?t=N3I4https://arxiv.org/pdf/2305.07804.pdf

Our findings indicate that LLMs effectively refine and diversify existing question-answer pairs, resulting in improved performance of a much smaller model on domain-specific QA datasets after fine-tuning.This study highlights the challenges of using LLMs for domain-specific question answering and suggests potential research directions to address these limitations, ultimately aiming to create more efficient and capable models for specialized applications.

Fine-tuning Large Language Models (LLMs) for specific tasks poses computational and time-related challenges (Liu et al., 2022; Vos et al., 2022). To address these issues, researchers have developed efficient fine-tuning techniques, such as Prefix Tuning and Low-rank Adaptation, as alternatives to traditional fine-tuning methods.

 

Generative data augmentation is a vital technique in machine learning for expanding and diversifying training data, ultimately enhancing model generalization (Calimeri et al., 2017; Shao et al., 2019; Sandfort et al., 2019; Shin et al., 2018; Yang et al., 2020; Carlini et al., 2021).

For NLP task, generative data augmentation with LLMs can involve paraphrasing text, creating alternative question-answer pairs, or generating new sentences or paragraphs. Producing diverse representations of input data enables models to learn various ways to express the same underlying concepts, increasing their adaptability to real-world data variations.

However, ensuring the quality and relevance of generated samples is crucial, as low-quality or irrelevant data can negatively impact performance. Additionally, controlling the diversity of generated samples is essential to prevent redundancy or overly similar data points. Thus, generative data augmentation using LLMs in NLP holds promise for improving model generalization and performance while addressing data quality, relevance, and diversity challenges.

Instruction-tuning constrains domain adaptability of language models

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值