- 博客(17)
- 收藏
- 关注
原创 多变量优化非凸问题——一种基于Gram矩阵的观测矩阵和稀疏字典的迭代优化算法
对于多变量优化非凸问题:minΦ,GP(Φ,Ψ)min_{\Phi,G}P(\Phi,\Psi)minΦ,GP(Φ,Ψ)式中:P(∗)P(*)P(∗)是损失函数(误差函数)。观测矩阵Φ\PhiΦ和稀疏字典Ψ\PsiΨ的交替优化方法WGMRSM:1、初始化Φ0\Phi^0Φ0为初始观测矩阵,初始化Ψ\PsiΨ为稀疏字典,设定迭代次数n=1n=1n=12、由Φ0\Phi^0Φ0可以计算观测后的字典的Gram矩阵为:G0=(Φ0Ψ)T(Φ0Ψ)=gij0G^0=(\Phi^0\Psi)^T(\Phi
2020-06-12 16:14:49 917 2
原创 怎么求解矩阵的范数最小的问题
求解如下问题:Φ=argminΦ∣∣G−ΨTΦTΦΨ∣∣F2\Phi=argmin_{\Phi}||G-\Psi^{T}\Phi^{T}\Phi\Psi||_F^2Φ=argminΦ∣∣G−ΨTΦTΦΨ∣∣F2求解方法:1、使用QR分解的方法求解上式2、使用梯度下降法,使用迭代的方法求解3、令AtTAt≈GA_t^TA_t\approx GAtTAt≈G,求解AtA_tAt,继而求解下式最小二乘问题:Φ=argminΦ∣∣At−ΦΨ∣∣F2\Phi=argmin_{\Phi}||A_t
2020-06-11 11:44:20 3650 2
原创 点积、内积、协方差与皮尔逊相关系数
现在空间有两个向量a=[a1b1]b=[a2b2]a=[a_1\quad b_1]\quad b=[a_2\quad b_2]a=[a1b1]b=[a2b2]点积和内积是一致的,点积是和投影相关的。a点乘b=∣∣a∣∣2∣∣b∣∣2cosθ=a1a2+b1b2a点乘b=||a||_2||b||_2cos\theta=a_1a_2+b_1b_2a点乘b=∣∣a∣∣2∣∣b∣∣2co...
2020-03-01 02:30:16 1869
原创 IQ调制器
IQ调制就是数据分为两路,分别进行载波调制,两路载波相互正交。I是in-phase(同相), q是 quadrature(正交)。IQ调制是矢量的方向问题,同相就是矢量方向相同的信号;正交分量就是两个信号矢量正交(差90°);IQ信号是一路是0°或180°,另一路是90°或270°,叫做I路和Q路,它们就是两路正交的信号。因为I和Q是在相位上面正交的(不相干),可以作为两路信号看待。所以频谱利...
2020-01-17 21:01:55 4580
原创 实数傅立叶变换和复数傅立叶变换
我们可以将一个载波调制信号写成如下形式:xc(t)=y(t)cos[2πfct+ϕ(t)]x_c(t)=y(t)cos[2\pi f_ct+\phi(t)]xc(t)=y(t)cos[2πfct+ϕ(t)]通过欧拉公式:eix=cosx+isinxe^{ix}=cosx+isinxeix=cosx+isinxcosx=12[eix+e−ix]cosx=\dfrac{1}{2}[e^{i...
2020-01-17 17:07:53 2997
原创 矩阵的初等变换与秩数的概念
1、矩阵的初等变换矩阵的初等变换是矩阵的一种十分重要的运算,它在解线性方程组,求逆矩阵及矩阵理论的探讨中都可起到重要的作用。为了引进矩阵的初等变换,先来分析用消元法解线性方程组的例子:引例:{2x1−x2−x3+x4=2,x1+x2−2x3+x4=4,4x1−6x2+2x3−2x4=4.\begin{cases}2x_1-x_2-x_3+x_4=2, \\x_1+x_2-2x_3+x_...
2019-12-27 17:16:05 2759
原创 傅立叶变换与小波变换
总结自《小波分析导论》稀疏表示:在给定的超完备字典中用尽可能少的原子来表示信号,可以获得信号更为简洁的表示方式,从而使我们更容易地获取信号中所蕴涵的信息,更方便进一步对信号进行加工处理,如压缩、编码等。引言在1873年,P.Du Bois-Reymond构造了一个实变量xxx的2π2\pi2π周期连续函数,它的Fourier级数在给定的点是发散的。如果Fourier的断言是正确的,它也不是F...
2019-12-24 16:46:37 567
转载 【转载】Python 数据皮尔逊相关性分析
Python 数据相关性分析speculatecat关注12018.04.25 15:07:39字数 1,659阅读 6,121概述在我们的工作中,会有一个这样的场景,有若干数据罗列在我们的面前,这组数据相互之间可能会存在一些联系,可能是此增彼涨,或者是负相关,也可能是没有关联,那么我们就需要一种能把这种关联性定量的工具来对数据进行分析,从而给我们的决策提供支持,本文即介绍如何使用 Python...
2019-12-23 09:32:18 3909
原创 等腰三角形悬臂梁式光纤光栅振动传感器分析
振动传感器的理论分析 当振动传感器在竖直方向上振动时,由牛顿定律可得a=FMeff=KeffΔLMeffa=\dfrac{F}{M_{eff}}=\dfrac{K_{eff}\Delta L}{M_{eff}}a=MeffF=MeffKeffΔL式中:aaa为加速度;FFF为力;ΔL\Delta LΔL为光纤光栅的变化量;MeffM_{eff}Meff为传感系统的等效质量;Keff...
2019-12-20 16:52:02 767 1
原创 python3的argparse --- 命令行选项、参数和子命令解析器的官方手册
记录一下python3的argparse — 命令行选项、参数和子命令解析器的中文官方手册的网址:https://docs.python.org/zh-cn/dev/library/argparse.html
2019-12-17 10:35:58 201
原创 解线性方程组的直接法
总结自《数值分析》李乃成版解线性方程组的直接法高斯消去法高斯消去法就是初等数学的消元法,这里是将求解步骤规范化,使之便于编写计算机程序(设置好每一步执行的顺序,使程序具有最小的时间复杂度和空间复杂度)消元法基本思路:1、将线性方程组消元成上三角形式:将:{a11x1+a12x2+a13x3=ya1a21x1+a22x2+a23x3=ya2a31x1+a32x2+a33x3=ya3\b...
2019-12-02 17:34:33 2639
转载 【转载】统计相关系数——Pearson(皮尔逊)、Spearman Rank(斯皮尔曼等级)、Kendall Rank(肯德尔等级)相关系数
转载自https://blog.csdn.net/wsywl/article/details/5727327https://blog.csdn.net/wsywl/article/details/5859751https://blog.csdn.net/wsywl/article/details/5889419Pearson(皮尔逊)相关系数皮尔逊相关也称为积差相关(或积矩相关)是英国统...
2019-11-27 16:58:14 3024
原创 【总结】期望和方差以及为什么方差是要除以n-1
总结自《概率论与数理统计应用》第二版 西安交大出版社第三章:随机变量的数字特征随机变量的数字特征是一些由它的概率分布所决定的常数,这些常数能够反映随机变量某些方面的重要特征,故称之为随机变量的数字特征。一、数学期望1.1 随机变量的数学期望:1.1.1 离散型随机变量x设x的分布律为:P{x=xi}=pi , i=1,2,...P\{x=x_{i}\} = p_{...
2019-11-25 22:07:03 1534
转载 【总结】python的生成器和迭代器
总结自https://www.cnblogs.com/1832921tongjieducn/p/10779099.htmlhttps://www.cnblogs.com/1832921tongjieducn/p/10779807.htmlhttps://blog.csdn.net/sinat_26917383/article/details/72857454先看python的迭代器迭代器...
2019-11-05 17:22:50 196
原创 读word2vec经典论文《Efficient Estimation of Word Representations in Vector Space》读书笔记
读了word2vec经典文章《Efficient Estimation of Word Representations inVector Space》后,简单记录一下作者提到的三种模型,作为自己的读书笔记总时间复杂度:O = ETQE是有多少个把样本从头到尾全部训练一遍的次数epochT是每个epoch把样本集合分为多少个batchQ是每个batch的时间复杂度这篇文章好像没有分bat...
2019-10-28 21:32:06 972
原创 numpy使用
首先要import numpy as np 查看array的一些性质a=np.array([0,1,2,3,4,5])a.dtype #数组元素数据类型a.size #数组尺寸,等于数组元素总数a.shape #数组形状,有几行几列a.ndim #数组的维度numpy和list之间可以相互转化 b=[5,4,3,2,1,0] a=np.array(b) #list变成ar...
2019-10-24 14:50:30 186
原创 anaconda激活环境后发现仍然使用的是默认环境
anaconda激活环境后发现仍然使用的是默认环境欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。新的改变我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用...
2019-10-21 10:18:02 2187 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人