IQ调制器

IQ调制就是数据分为两路,分别进行载波调制,两路载波相互正交。I是in-phase(同相), q是 quadrature(正交)。
IQ调制是矢量的方向问题,同相就是矢量方向相同的信号;正交分量就是两个信号矢量正交(差90°);IQ信号是一路是0°或180°,另一路是90°或270°,叫做I路和Q路,它们就是两路正交的信号。
因为I和Q是在相位上面正交的(不相干),可以作为两路信号看待。所以频谱利用率比单相调制提高一倍。但是IQ对解调要求高于单相(必须严格与I相差90度的整数倍,否则Q信号会混进I,I也会混进Q)。
简单的说就是数据分为两路,分别进行载波调制,两路载波相互正交。 正交信号就是两路频率相同,相位相差90度的载波,一般用sin和cos,与I,Q两路信号分别调制后一起发射,从而提高频谱利用率。
举例说明:
x c ( t ) = x R ( t ) A c c o s ( 2 π f c t + θ ) + x L ( t ) A c s i n ( 2 π f c t + θ ) x_c(t)=x_R(t)A_ccos(2\pi f_ct+\theta)+x_L(t)A_csin(2\pi f_ct+\theta) xc(t)=xR(t)Accos(2πfct+θ)+xL(t)Acsin(2πfct+θ)
写成复数形式(把 c o s x cosx cosx写成 e i x e^{ix} eix,把 s i n x sinx sinx写成 − i e i x -ie^{ix} ieix,总之就是复数的实部就是对应的实数)就是:
x c ( t ) ˚ = A c ( x R ( t ) − i x L ( t ) ) e i ( 2 π f c t + θ ) \mathring{x_c(t)}=A_c(x_R(t)-ix_L(t))e^{i(2\pi f_ct+\theta)} xc(t)˚=Ac(xR(t)ixL(t))ei(2πfct+θ)
写成包络就是:
x c ( t ) ~ = A c ( x R ( t ) − i x L ( t ) ) e i θ \widetilde{x_c(t)}=A_c(x_R(t)-ix_L(t))e^{i\theta} xc(t) =Ac(xR(t)ixL(t))eiθ
那么在接收端应该如何解调出 x R ( t ) x_R(t) xR(t) x L ( t ) x_L(t) xL(t)呢?
在接收端将原始信号分别乘以 2 c o s ( 2 π f c t + θ ) 2cos(2\pi f_ct+\theta) 2cos(2πfct+θ) 2 s i n ( 2 π f c t + θ ) 2sin(2\pi f_ct+\theta) 2sin(2πfct+θ)
x c ( t ) × 2 c o s ( 2 π f c + θ ) = ( x R ( t ) A c c o s ( 2 π f c t + θ ) + x L ( t ) A c s i n ( 2 π f c t + θ ) ) × 2 c o s ( 2 π f c + θ ) = x R ( t ) A c ( c o s ( 4 π f c t ) + c o s ( θ − θ ) ) + x L ( t ) A c ( s i n ( 4 π f c t ) + s i n ( θ − θ ) ) x_c(t)\times 2cos(2\pi f_c+\theta)=(x_R(t)A_ccos(2\pi f_ct+\theta)+x_L(t)A_csin(2\pi f_ct+\theta))\times 2cos(2\pi f_c+\theta)=x_R(t)A_c(cos(4\pi f_ct)+cos(\theta -\theta))+x_L(t)A_c(sin(4\pi f_ct)+sin(\theta -\theta)) xc(t)×2cos(2πfc+θ)=(xR(t)Accos(2πfct+θ)+xL(t)Acsin(2πfct+θ))×2cos(2πfc+θ)=xR(t)Ac(cos(4πfct)+cos(θθ))+xL(t)Ac(sin(4πfct)+sin(θθ))
通过低通滤波器滤除 4 π f c 4\pi f_c 4πfc频段后,上式等于 A c x R ( t ) A_cx_R(t) AcxR(t)
x c ( t ) × 2 s i n ( 2 π f c + θ ) = ( x R ( t ) A c c o s ( 2 π f c t + θ ) + x L ( t ) A c s i n ( 2 π f c t + θ ) ) × 2 s i n ( 2 π f c + θ ) = x R ( t ) A c ( s i n ( 4 π f c t ) − s i n ( θ − θ ) ) + x L ( t ) A c ( − c o s ( 4 π f c t ) + c o s ( θ − θ ) ) x_c(t)\times 2sin(2\pi f_c+\theta)=(x_R(t)A_ccos(2\pi f_ct+\theta)+x_L(t)A_csin(2\pi f_ct+\theta))\times 2sin(2\pi f_c+\theta)=x_R(t)A_c(sin(4\pi f_ct)-sin(\theta -\theta))+x_L(t)A_c(-cos(4\pi f_ct)+cos(\theta -\theta)) xc(t)×2sin(2πfc+θ)=(xR(t)Accos(2πfct+θ)+xL(t)Acsin(2πfct+θ))×2sin(2πfc+θ)=xR(t)Ac(sin(4πfct)sin(θθ))+xL(t)Ac(cos(4πfct)+cos(θθ))
通过低通滤波器滤除 4 π f c 4\pi f_c 4πfc频段后,上式等于 A c x L ( t ) A_cx_L(t) AcxL(t)
也可以通过包络来分析,将包络分别乘以 e − i θ e^{-i\theta} eiθ e − i ( θ − π 2 ) e^{-i(\theta -\frac{\pi}{2})} ei(θ2π)
R e { x c ( t ) ~ × e − i θ } = R e { A c ( x R ( t ) − i x L ( t ) ) } = A c x R ( t ) Re\{\widetilde{x_c(t)}\times e^{-i\theta}\}=Re\{A_c(x_R(t)-ix_L(t))\}=A_cx_R(t) Re{xc(t) ×eiθ}=Re{Ac(xR(t)ixL(t))}=AcxR(t)
R e { x c ( t ) ~ × e − i ( θ − π 2 ) } = R e { A c ( x R ( t ) − i x L ( t ) ) e i π 2 } = R e { A c ( x R ( t ) − i x L ( t ) ) × i } = R e { A c ( x L ( t ) + i x R ( t ) ) } = A c x L ( t ) Re\{\widetilde{x_c(t)}\times e^{-i(\theta-\frac{\pi}{2})}\}=Re\{A_c(x_R(t)-ix_L(t))e^{i\frac{\pi}{2}}\}=Re\{A_c(x_R(t)-ix_L(t))\times i\}=Re\{A_c(x_L(t)+ix_R(t))\}=A_cx_L(t) Re{xc(t) ×ei(θ2π)}=Re{Ac(xR(t)ixL(t))ei2π}=Re{Ac(xR(t)ixL(t))×i}=Re{Ac(xL(t)+ixR(t))}=AcxL(t)

这个原理和PLL的原理很像,所以这里再加一个PLL的原理图

参考频率
鉴相器,功能就是乘法器
LPF,环路滤波器
乘以学习率
VCO,压控振荡器
输出
分频器1/N

参考频率是:
A c o s ( 2 π f t + θ ) Acos(2\pi ft+\theta) Acos(2πft+θ)
分频器1/N的输出是:
2 s i n ( 2 π f ^ t + θ ^ ) 2sin(2\pi \hat{f}t+\hat{\theta}) 2sin(2πf^t+θ^)
鉴相器的输出:
2 A c o s ( 2 π f t + θ ) s i n ( 2 π f ^ + θ ^ ) = A s i n ( 2 π ( f + f ^ ) t + θ + θ ^ ) − A s i n ( 2 π ( f − f ^ ) + θ − θ ^ ) 2Acos(2\pi ft+\theta)sin(2\pi \hat{f}+\hat{\theta})=Asin(2\pi (f+\hat{f})t+\theta+\hat{\theta})-Asin(2\pi(f-\hat{f})+\theta-\hat{\theta}) 2Acos(2πft+θ)sin(2πf^+θ^)=Asin(2π(f+f^)t+θ+θ^)Asin(2π(ff^)+θθ^)
环路滤波器的输出:
A s i n ( 2 π ( f − f ^ ) t + θ − θ ^ ) Asin(2\pi(f-\hat{f})t+\theta-\hat{\theta}) Asin(2π(ff^)t+θθ^)
乘以学习率之后:
A s i n ( 2 π ( f − f ^ ) t + θ − θ ^ ) × E l e a r n i n g Asin(2\pi(f-\hat{f})t+\theta-\hat{\theta})\times E_{learning} Asin(2π(ff^)t+θθ^)×Elearning
VCO会根据加在上面的电压,输出对应频率的信号。再经过分频器1/N后,进入鉴相器。
假设 1 N f v c o = f ^ = f \dfrac{1}{N}f_{vco}=\hat{f}=f N1fvco=f^=f,则环路滤波器的输出为:
A s i n ( θ − θ ^ ) Asin(\theta-\hat{\theta}) Asin(θθ^)
这是一个常量,会使得VCO输出一个固定的频率的信号。最终得到的输出就是一个高于参考频率N倍的固定频率的输出。

### 关于100G偏振复用正交调制光纤通信系统的概述和技术实现 #### 技术背景 现代高速光通信系统中,为了满足日益增长的数据传输需求,采用高阶调制技术和多路复用技术成为必然趋势。其中,100G偏振复用正交相移键控(Polarization Multiplexed Quadrature Phase Shift Keying, PM-QPSK)作为一种高效的技术方案,在长距离大容量光网络中得到了广泛应用[^1]。 #### 工作原理 PM-QPSK通过利用两个相互垂直的线性偏振态来携带独立的信息流,并在同一根光纤内同时传送这两个信号。具体来说: - **双极化处理**:发送端将数据分成两组分别映射到水平和垂直方向上的载波上; - **IQ调制器**:每一路都经过I/Q调制器进行四象限编码形成QPSK符号序列; - **合波操作**:最后由90度混合耦合器完成这两条路径信号合成并发射出去; 接收侧则相反过程解码恢复原始比特流。这种结构不仅提高了频谱效率还增强了抗干扰能力。 #### 实现方式 实际部署过程中涉及到的关键组件和技术包括但不限于以下几个方面: - **光源模块**:通常选用窄线宽激光源作为本地振荡器提供稳定可靠的相干检测基础; - **驱动电路设计**:针对不同速率等级优化匹配相应的电学接口参数确保最佳性能表现; - **数字信号处理器(DSP)**:用于执行前向纠错(FEC), 色散补偿等功能从而简化硬件复杂度降低成本开销; ```python import numpy as np def pm_qpsk_modulation(data_stream): """ Simulate the process of Polarization-Multiplexed QPSK Modulation. Args: data_stream (list): Input binary stream to be modulated Returns: tuple: Two lists representing I and Q components after modulation on both polarizations """ # Split input bitstream into two streams for horizontal & vertical polarization h_pol_bits = data_stream[::2] v_pol_bits = data_stream[1::2] # Perform Gray mapping from bits to constellation points (-1 or 1) i_h = [-1 if b == '0' else 1 for b in h_pol_bits][::2] q_h = [-1 if b == '0' else 1 for b in h_pol_bits][1::2] i_v = [-1 if b == '0' else 1 for b in v_pol_bits][::2] q_v = [-1 if b == '0' else 1 for b in v_pol_bits][1::2] return ((i_h, q_h), (i_v, q_v)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值