IQ调制就是数据分为两路,分别进行载波调制,两路载波相互正交。I是in-phase(同相), q是 quadrature(正交)。
IQ调制是矢量的方向问题,同相就是矢量方向相同的信号;正交分量就是两个信号矢量正交(差90°);IQ信号是一路是0°或180°,另一路是90°或270°,叫做I路和Q路,它们就是两路正交的信号。
因为I和Q是在相位上面正交的(不相干),可以作为两路信号看待。所以频谱利用率比单相调制提高一倍。但是IQ对解调要求高于单相(必须严格与I相差90度的整数倍,否则Q信号会混进I,I也会混进Q)。
简单的说就是数据分为两路,分别进行载波调制,两路载波相互正交。 正交信号就是两路频率相同,相位相差90度的载波,一般用sin和cos,与I,Q两路信号分别调制后一起发射,从而提高频谱利用率。
举例说明:
x
c
(
t
)
=
x
R
(
t
)
A
c
c
o
s
(
2
π
f
c
t
+
θ
)
+
x
L
(
t
)
A
c
s
i
n
(
2
π
f
c
t
+
θ
)
x_c(t)=x_R(t)A_ccos(2\pi f_ct+\theta)+x_L(t)A_csin(2\pi f_ct+\theta)
xc(t)=xR(t)Accos(2πfct+θ)+xL(t)Acsin(2πfct+θ)
写成复数形式(把
c
o
s
x
cosx
cosx写成
e
i
x
e^{ix}
eix,把
s
i
n
x
sinx
sinx写成
−
i
e
i
x
-ie^{ix}
−ieix,总之就是复数的实部就是对应的实数)就是:
x
c
(
t
)
˚
=
A
c
(
x
R
(
t
)
−
i
x
L
(
t
)
)
e
i
(
2
π
f
c
t
+
θ
)
\mathring{x_c(t)}=A_c(x_R(t)-ix_L(t))e^{i(2\pi f_ct+\theta)}
xc(t)˚=Ac(xR(t)−ixL(t))ei(2πfct+θ)
写成包络就是:
x
c
(
t
)
~
=
A
c
(
x
R
(
t
)
−
i
x
L
(
t
)
)
e
i
θ
\widetilde{x_c(t)}=A_c(x_R(t)-ix_L(t))e^{i\theta}
xc(t)
=Ac(xR(t)−ixL(t))eiθ
那么在接收端应该如何解调出
x
R
(
t
)
x_R(t)
xR(t)和
x
L
(
t
)
x_L(t)
xL(t)呢?
在接收端将原始信号分别乘以
2
c
o
s
(
2
π
f
c
t
+
θ
)
2cos(2\pi f_ct+\theta)
2cos(2πfct+θ)和
2
s
i
n
(
2
π
f
c
t
+
θ
)
2sin(2\pi f_ct+\theta)
2sin(2πfct+θ)
x
c
(
t
)
×
2
c
o
s
(
2
π
f
c
+
θ
)
=
(
x
R
(
t
)
A
c
c
o
s
(
2
π
f
c
t
+
θ
)
+
x
L
(
t
)
A
c
s
i
n
(
2
π
f
c
t
+
θ
)
)
×
2
c
o
s
(
2
π
f
c
+
θ
)
=
x
R
(
t
)
A
c
(
c
o
s
(
4
π
f
c
t
)
+
c
o
s
(
θ
−
θ
)
)
+
x
L
(
t
)
A
c
(
s
i
n
(
4
π
f
c
t
)
+
s
i
n
(
θ
−
θ
)
)
x_c(t)\times 2cos(2\pi f_c+\theta)=(x_R(t)A_ccos(2\pi f_ct+\theta)+x_L(t)A_csin(2\pi f_ct+\theta))\times 2cos(2\pi f_c+\theta)=x_R(t)A_c(cos(4\pi f_ct)+cos(\theta -\theta))+x_L(t)A_c(sin(4\pi f_ct)+sin(\theta -\theta))
xc(t)×2cos(2πfc+θ)=(xR(t)Accos(2πfct+θ)+xL(t)Acsin(2πfct+θ))×2cos(2πfc+θ)=xR(t)Ac(cos(4πfct)+cos(θ−θ))+xL(t)Ac(sin(4πfct)+sin(θ−θ))
通过低通滤波器滤除
4
π
f
c
4\pi f_c
4πfc频段后,上式等于
A
c
x
R
(
t
)
A_cx_R(t)
AcxR(t)
x
c
(
t
)
×
2
s
i
n
(
2
π
f
c
+
θ
)
=
(
x
R
(
t
)
A
c
c
o
s
(
2
π
f
c
t
+
θ
)
+
x
L
(
t
)
A
c
s
i
n
(
2
π
f
c
t
+
θ
)
)
×
2
s
i
n
(
2
π
f
c
+
θ
)
=
x
R
(
t
)
A
c
(
s
i
n
(
4
π
f
c
t
)
−
s
i
n
(
θ
−
θ
)
)
+
x
L
(
t
)
A
c
(
−
c
o
s
(
4
π
f
c
t
)
+
c
o
s
(
θ
−
θ
)
)
x_c(t)\times 2sin(2\pi f_c+\theta)=(x_R(t)A_ccos(2\pi f_ct+\theta)+x_L(t)A_csin(2\pi f_ct+\theta))\times 2sin(2\pi f_c+\theta)=x_R(t)A_c(sin(4\pi f_ct)-sin(\theta -\theta))+x_L(t)A_c(-cos(4\pi f_ct)+cos(\theta -\theta))
xc(t)×2sin(2πfc+θ)=(xR(t)Accos(2πfct+θ)+xL(t)Acsin(2πfct+θ))×2sin(2πfc+θ)=xR(t)Ac(sin(4πfct)−sin(θ−θ))+xL(t)Ac(−cos(4πfct)+cos(θ−θ))
通过低通滤波器滤除
4
π
f
c
4\pi f_c
4πfc频段后,上式等于
A
c
x
L
(
t
)
A_cx_L(t)
AcxL(t)
也可以通过包络来分析,将包络分别乘以
e
−
i
θ
e^{-i\theta}
e−iθ和
e
−
i
(
θ
−
π
2
)
e^{-i(\theta -\frac{\pi}{2})}
e−i(θ−2π)
R
e
{
x
c
(
t
)
~
×
e
−
i
θ
}
=
R
e
{
A
c
(
x
R
(
t
)
−
i
x
L
(
t
)
)
}
=
A
c
x
R
(
t
)
Re\{\widetilde{x_c(t)}\times e^{-i\theta}\}=Re\{A_c(x_R(t)-ix_L(t))\}=A_cx_R(t)
Re{xc(t)
×e−iθ}=Re{Ac(xR(t)−ixL(t))}=AcxR(t)
R
e
{
x
c
(
t
)
~
×
e
−
i
(
θ
−
π
2
)
}
=
R
e
{
A
c
(
x
R
(
t
)
−
i
x
L
(
t
)
)
e
i
π
2
}
=
R
e
{
A
c
(
x
R
(
t
)
−
i
x
L
(
t
)
)
×
i
}
=
R
e
{
A
c
(
x
L
(
t
)
+
i
x
R
(
t
)
)
}
=
A
c
x
L
(
t
)
Re\{\widetilde{x_c(t)}\times e^{-i(\theta-\frac{\pi}{2})}\}=Re\{A_c(x_R(t)-ix_L(t))e^{i\frac{\pi}{2}}\}=Re\{A_c(x_R(t)-ix_L(t))\times i\}=Re\{A_c(x_L(t)+ix_R(t))\}=A_cx_L(t)
Re{xc(t)
×e−i(θ−2π)}=Re{Ac(xR(t)−ixL(t))ei2π}=Re{Ac(xR(t)−ixL(t))×i}=Re{Ac(xL(t)+ixR(t))}=AcxL(t)
这个原理和PLL的原理很像,所以这里再加一个PLL的原理图
参考频率是:
A
c
o
s
(
2
π
f
t
+
θ
)
Acos(2\pi ft+\theta)
Acos(2πft+θ)
分频器1/N的输出是:
2
s
i
n
(
2
π
f
^
t
+
θ
^
)
2sin(2\pi \hat{f}t+\hat{\theta})
2sin(2πf^t+θ^)
鉴相器的输出:
2
A
c
o
s
(
2
π
f
t
+
θ
)
s
i
n
(
2
π
f
^
+
θ
^
)
=
A
s
i
n
(
2
π
(
f
+
f
^
)
t
+
θ
+
θ
^
)
−
A
s
i
n
(
2
π
(
f
−
f
^
)
+
θ
−
θ
^
)
2Acos(2\pi ft+\theta)sin(2\pi \hat{f}+\hat{\theta})=Asin(2\pi (f+\hat{f})t+\theta+\hat{\theta})-Asin(2\pi(f-\hat{f})+\theta-\hat{\theta})
2Acos(2πft+θ)sin(2πf^+θ^)=Asin(2π(f+f^)t+θ+θ^)−Asin(2π(f−f^)+θ−θ^)
环路滤波器的输出:
A
s
i
n
(
2
π
(
f
−
f
^
)
t
+
θ
−
θ
^
)
Asin(2\pi(f-\hat{f})t+\theta-\hat{\theta})
Asin(2π(f−f^)t+θ−θ^)
乘以学习率之后:
A
s
i
n
(
2
π
(
f
−
f
^
)
t
+
θ
−
θ
^
)
×
E
l
e
a
r
n
i
n
g
Asin(2\pi(f-\hat{f})t+\theta-\hat{\theta})\times E_{learning}
Asin(2π(f−f^)t+θ−θ^)×Elearning
VCO会根据加在上面的电压,输出对应频率的信号。再经过分频器1/N后,进入鉴相器。
假设
1
N
f
v
c
o
=
f
^
=
f
\dfrac{1}{N}f_{vco}=\hat{f}=f
N1fvco=f^=f,则环路滤波器的输出为:
A
s
i
n
(
θ
−
θ
^
)
Asin(\theta-\hat{\theta})
Asin(θ−θ^)
这是一个常量,会使得VCO输出一个固定的频率的信号。最终得到的输出就是一个高于参考频率N倍的固定频率的输出。