IQ调制器

IQ调制就是数据分为两路,分别进行载波调制,两路载波相互正交。I是in-phase(同相), q是 quadrature(正交)。
IQ调制是矢量的方向问题,同相就是矢量方向相同的信号;正交分量就是两个信号矢量正交(差90°);IQ信号是一路是0°或180°,另一路是90°或270°,叫做I路和Q路,它们就是两路正交的信号。
因为I和Q是在相位上面正交的(不相干),可以作为两路信号看待。所以频谱利用率比单相调制提高一倍。但是IQ对解调要求高于单相(必须严格与I相差90度的整数倍,否则Q信号会混进I,I也会混进Q)。
简单的说就是数据分为两路,分别进行载波调制,两路载波相互正交。 正交信号就是两路频率相同,相位相差90度的载波,一般用sin和cos,与I,Q两路信号分别调制后一起发射,从而提高频谱利用率。
举例说明:
x c ( t ) = x R ( t ) A c c o s ( 2 π f c t + θ ) + x L ( t ) A c s i n ( 2 π f c t + θ ) x_c(t)=x_R(t)A_ccos(2\pi f_ct+\theta)+x_L(t)A_csin(2\pi f_ct+\theta) xc(t)=xR(t)Accos(2πfct+θ)+xL(t)Acsin(2πfct+θ)
写成复数形式(把 c o s x cosx cosx写成 e i x e^{ix} eix,把 s i n x sinx sinx写成 − i e i x -ie^{ix} ieix,总之就是复数的实部就是对应的实数)就是:
x c ( t ) ˚ = A c ( x R ( t ) − i x L ( t ) ) e i ( 2 π f c t + θ ) \mathring{x_c(t)}=A_c(x_R(t)-ix_L(t))e^{i(2\pi f_ct+\theta)} xc(t)˚=Ac(xR(t)ixL(t))ei(2πfct+θ)
写成包络就是:
x c ( t ) ~ = A c ( x R ( t ) − i x L ( t ) ) e i θ \widetilde{x_c(t)}=A_c(x_R(t)-ix_L(t))e^{i\theta} xc(t) =Ac(xR(t)ixL(t))eiθ
那么在接收端应该如何解调出 x R ( t ) x_R(t) xR(t) x L ( t ) x_L(t) xL(t)呢?
在接收端将原始信号分别乘以 2 c o s ( 2 π f c t + θ ) 2cos(2\pi f_ct+\theta) 2cos(2πfct+θ) 2 s i n ( 2 π f c t + θ ) 2sin(2\pi f_ct+\theta) 2sin(2πfct+θ)
x c ( t ) × 2 c o s ( 2 π f c + θ ) = ( x R ( t ) A c c o s ( 2 π f c t + θ ) + x L ( t ) A c s i n ( 2 π f c t + θ ) ) × 2 c o s ( 2 π f c + θ ) = x R ( t ) A c ( c o s ( 4 π f c t ) + c o s ( θ − θ ) ) + x L ( t ) A c ( s i n ( 4 π f c t ) + s i n ( θ − θ ) ) x_c(t)\times 2cos(2\pi f_c+\theta)=(x_R(t)A_ccos(2\pi f_ct+\theta)+x_L(t)A_csin(2\pi f_ct+\theta))\times 2cos(2\pi f_c+\theta)=x_R(t)A_c(cos(4\pi f_ct)+cos(\theta -\theta))+x_L(t)A_c(sin(4\pi f_ct)+sin(\theta -\theta)) xc(t)×2cos(2πfc+θ)=(xR(t)Accos(2πfct+θ)+xL(t)Acsin(2πfct+θ))×2cos(2πfc+θ)=xR(t)Ac(cos(4πfct)+cos(θθ))+xL(t)Ac(sin(4πfct)+sin(θθ))
通过低通滤波器滤除 4 π f c 4\pi f_c 4πfc频段后,上式等于 A c x R ( t ) A_cx_R(t) AcxR(t)
x c ( t ) × 2 s i n ( 2 π f c + θ ) = ( x R ( t ) A c c o s ( 2 π f c t + θ ) + x L ( t ) A c s i n ( 2 π f c t + θ ) ) × 2 s i n ( 2 π f c + θ ) = x R ( t ) A c ( s i n ( 4 π f c t ) − s i n ( θ − θ ) ) + x L ( t ) A c ( − c o s ( 4 π f c t ) + c o s ( θ − θ ) ) x_c(t)\times 2sin(2\pi f_c+\theta)=(x_R(t)A_ccos(2\pi f_ct+\theta)+x_L(t)A_csin(2\pi f_ct+\theta))\times 2sin(2\pi f_c+\theta)=x_R(t)A_c(sin(4\pi f_ct)-sin(\theta -\theta))+x_L(t)A_c(-cos(4\pi f_ct)+cos(\theta -\theta)) xc(t)×2sin(2πfc+θ)=(xR(t)Accos(2πfct+θ)+xL(t)Acsin(2πfct+θ))×2sin(2πfc+θ)=xR(t)Ac(sin(4πfct)sin(θθ))+xL(t)Ac(cos(4πfct)+cos(θθ))
通过低通滤波器滤除 4 π f c 4\pi f_c 4πfc频段后,上式等于 A c x L ( t ) A_cx_L(t) AcxL(t)
也可以通过包络来分析,将包络分别乘以 e − i θ e^{-i\theta} eiθ e − i ( θ − π 2 ) e^{-i(\theta -\frac{\pi}{2})} ei(θ2π)
R e { x c ( t ) ~ × e − i θ } = R e { A c ( x R ( t ) − i x L ( t ) ) } = A c x R ( t ) Re\{\widetilde{x_c(t)}\times e^{-i\theta}\}=Re\{A_c(x_R(t)-ix_L(t))\}=A_cx_R(t) Re{xc(t) ×eiθ}=Re{Ac(xR(t)ixL(t))}=AcxR(t)
R e { x c ( t ) ~ × e − i ( θ − π 2 ) } = R e { A c ( x R ( t ) − i x L ( t ) ) e i π 2 } = R e { A c ( x R ( t ) − i x L ( t ) ) × i } = R e { A c ( x L ( t ) + i x R ( t ) ) } = A c x L ( t ) Re\{\widetilde{x_c(t)}\times e^{-i(\theta-\frac{\pi}{2})}\}=Re\{A_c(x_R(t)-ix_L(t))e^{i\frac{\pi}{2}}\}=Re\{A_c(x_R(t)-ix_L(t))\times i\}=Re\{A_c(x_L(t)+ix_R(t))\}=A_cx_L(t) Re{xc(t) ×ei(θ2π)}=Re{Ac(xR(t)ixL(t))ei2π}=Re{Ac(xR(t)ixL(t))×i}=Re{Ac(xL(t)+ixR(t))}=AcxL(t)

这个原理和PLL的原理很像,所以这里再加一个PLL的原理图

参考频率
鉴相器,功能就是乘法器
LPF,环路滤波器
乘以学习率
VCO,压控振荡器
输出
分频器1/N

参考频率是:
A c o s ( 2 π f t + θ ) Acos(2\pi ft+\theta) Acos(2πft+θ)
分频器1/N的输出是:
2 s i n ( 2 π f ^ t + θ ^ ) 2sin(2\pi \hat{f}t+\hat{\theta}) 2sin(2πf^t+θ^)
鉴相器的输出:
2 A c o s ( 2 π f t + θ ) s i n ( 2 π f ^ + θ ^ ) = A s i n ( 2 π ( f + f ^ ) t + θ + θ ^ ) − A s i n ( 2 π ( f − f ^ ) + θ − θ ^ ) 2Acos(2\pi ft+\theta)sin(2\pi \hat{f}+\hat{\theta})=Asin(2\pi (f+\hat{f})t+\theta+\hat{\theta})-Asin(2\pi(f-\hat{f})+\theta-\hat{\theta}) 2Acos(2πft+θ)sin(2πf^+θ^)=Asin(2π(f+f^)t+θ+θ^)Asin(2π(ff^)+θθ^)
环路滤波器的输出:
A s i n ( 2 π ( f − f ^ ) t + θ − θ ^ ) Asin(2\pi(f-\hat{f})t+\theta-\hat{\theta}) Asin(2π(ff^)t+θθ^)
乘以学习率之后:
A s i n ( 2 π ( f − f ^ ) t + θ − θ ^ ) × E l e a r n i n g Asin(2\pi(f-\hat{f})t+\theta-\hat{\theta})\times E_{learning} Asin(2π(ff^)t+θθ^)×Elearning
VCO会根据加在上面的电压,输出对应频率的信号。再经过分频器1/N后,进入鉴相器。
假设 1 N f v c o = f ^ = f \dfrac{1}{N}f_{vco}=\hat{f}=f N1fvco=f^=f,则环路滤波器的输出为:
A s i n ( θ − θ ^ ) Asin(\theta-\hat{\theta}) Asin(θθ^)
这是一个常量,会使得VCO输出一个固定的频率的信号。最终得到的输出就是一个高于参考频率N倍的固定频率的输出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值