实数傅立叶变换和复数傅立叶变换

我们可以将一个载波调制信号写成如下形式:
x c ( t ) = y ( t ) c o s [ 2 π f c t + ϕ ( t ) ] x_c(t)=y(t)cos[2\pi f_ct+\phi(t)] xc(t)=y(t)cos[2πfct+ϕ(t)]
通过欧拉公式:
e i x = c o s x + i s i n x e^{ix}=cosx+isinx eix=cosx+isinx
c o s x = 1 2 [ e i x + e − i x ] cosx=\dfrac{1}{2}[e^{ix}+e^{-ix}] cosx=21[eix+eix]
s i n x = 1 2 i [ e i x − e − i x ] sinx=\dfrac{1}{2i}[e^{ix}-e^{-ix}] sinx=2i1[eixeix]
我们可以把载波调制信号写成:
x c ( t ) = 1 2 [ y ( t ) e i [ 2 π f c t + ϕ ( t ) ] + y ( t ) e − i [ 2 π f c t + ϕ ( t ) ] ] x_c(t)=\dfrac{1}{2}[y(t)e^{i[2\pi f_ct+\phi(t)]}+y(t)e^{-i[2\pi f_ct+\phi(t)]}] xc(t)=21[y(t)ei[2πfct+ϕ(t)]+y(t)ei[2πfct+ϕ(t)]]
把载波调制信号写成复数形式:
x c ( t ) ˚ = y ( t ) e i [ 2 π f c t + ϕ ( t ) ] \mathring{x_c(t)}=y(t)e^{i[2\pi f_ct+\phi(t)]} xc(t)˚=y(t)ei[2πfct+ϕ(t)]
载波调制信号的复数共轭形式就可以写成:
x c ( t ) ˚ ‾ = y ( t ) e − i [ 2 π f c t + ϕ ( t ) ] \overline{\mathring{x_c(t)}}=y(t)e^{-i[2\pi f_ct+\phi(t)]} xc(t)˚=y(t)ei[2πfct+ϕ(t)]
所以,可以把载波调制信号的实数形式写成:
x c ( t ) = 1 2 ( x c ( t ) ˚ + x c ( t ) ˚ ‾ ) x_c(t)=\dfrac{1}{2}(\mathring{x_c(t)}+\overline{\mathring{x_c(t)}}) xc(t)=21(xc(t)˚+xc(t)˚)
傅立叶变换
F { x c ( t ) ˚ } = X c ( w ) ˚ F\{\mathring{x_c(t)}\}=\mathring{X_c(w)} F{xc(t)˚}=Xc(w)˚

F { x c ( t ) ˚ ‾ } = X c ( − w ) ˚ ‾ F\{\overline{\mathring{x_c(t)}}\}=\overline{\mathring{X_c(-w)}} F{xc(t)˚}=Xc(w)˚
这个也比较好理解,比如:
对于10hz的复数信号:
e i ( 2 π × 10 t + ϕ ) e^{i(2\pi \times10t+\phi)} ei(2π×10t+ϕ)
当它乘以 e − i ( 2 π × 10 t ) e^{-i(2\pi \times10t)} ei(2π×10t)时,乘积为1,一个周期的积分结果为T,所以它的傅立叶变换就是10hz上的冲击函数,相位为 e i ϕ e^{i\phi} eiϕ
对于10hz的复数共轭信号:
e − i ( 2 π × 10 t + ϕ ) e^{-i(2\pi \times10t+\phi)} ei(2π×10t+ϕ)
当它乘以 e i ( 2 π × 10 t ) e^{i(2\pi \times10t)} ei(2π×10t)时,乘积为1,一个周期的积分结果为T,所以它的傅立叶变换就是-10hz上的冲击函数,相位为 e − i ϕ e^{-i\phi} eiϕ
所以
X c ( w ) = F { x c ( t ) } = 1 2 [ X c ( w ) ˚ + X c ( w ) ˚ ‾ ] X_c(w)=F\{x_c(t)\}=\dfrac{1}{2}[\mathring{X_c(w)}+\overline{\mathring{X_c(w)}}] Xc(w)=F{xc(t)}=21[Xc(w)˚+Xc(w)˚]
上式说明,调制信号的傅立叶变换是两个部分的求和,一个部分是正频率 X c ( w ) ˚ \mathring{X_c(w)} Xc(w)˚,一个部分是负频率 X c ( w ) ˚ ‾ \overline{\mathring{X_c(w)}} Xc(w)˚。我们因此可以发现, X c ( w ) ˚ \mathring{X_c(w)} Xc(w)˚可以通过 X c ( w ) X_c(w) Xc(w)获得。我们只需要提取 X c ( w ) X_c(w) Xc(w)的正频率部分,即。
X c ( w ) ˚ = 2 u ( w ) X c ( w ) \mathring{X_c(w)}=2u(w)X_c(w) Xc(w)˚=2u(w)Xc(w)
那么,如果我们获得了调制信号的傅立叶变换之后,如何将其解调呢?
这里引入包络的概念:
x c ( t ) ~ = y ( t ) e i ϕ ( t ) = y ( t ) ( c o s ( ϕ ( t ) ) + i s i n ( ϕ ( t ) ) ) \widetilde{x_c(t)}=y(t)e^{i\phi(t)}=y(t)(cos(\phi(t))+isin(\phi(t))) xc(t) =y(t)eiϕ(t)=y(t)(cos(ϕ(t))+isin(ϕ(t)))
x c ( t ) ~ = x c ( t ) ˚ e − i w c t \widetilde{x_c(t)}=\mathring{x_c(t)}e^{-iw_ct} xc(t) =xc(t)˚eiwct
F { x c ( t ) ~ } = F { x c ( t ) ˚ e − i w c t } = ∫ − ∞ ∞ x c ( t ) ˚ e − i w c t e − i w t d t = ∫ − ∞ ∞ x c ( t ) ˚ e − i ( w c + w ) t d t = X ˚ ( w + w c ) F\{\widetilde{x_c(t)}\}=F\{\mathring{x_c(t)}e^{-iw_ct}\}=\int_{-\infty}^{\infty}\mathring{x_c(t)}e^{-iw_ct}e^{-iwt}dt=\int_{-\infty}^{\infty}\mathring{x_c(t)}e^{-i(w_c+w)t}dt=\mathring{X}(w+w_c) F{xc(t) }=F{xc(t)˚eiwct}=xc(t)˚eiwcteiwtdt=xc(t)˚ei(wc+w)tdt=X˚(w+wc)
所以 F { x c ( t ) ~ } F\{\widetilde{x_c(t)}\} F{xc(t) }相当于将 X ˚ ( w ) \mathring{X}(w) X˚(w)向左平移 w c w_c wc

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值