傅立叶变换与小波变换

参考书籍《小波分析导论》

稀疏表示:在给定的超完备字典中用尽可能少的原子来表示信号,可以获得信号更为简洁的表示方式,从而使我们更容易地获取信号中所蕴涵的信息,更方便进一步对信号进行加工处理,如压缩、编码等。

引言

在1873年,P.Du Bois-Reymond构造了一个实变量 x x x 2 π 2\pi 2π周期连续函数,它的Fourier级数在给定的点是发散的。如果Fourier的断言是正确的,它也不是Fourier自己预想的那种意义。
为了解决这个问题,逐渐产生了几种解决方法:

修改传统傅立叶变换(传统FT变换)

修改 f f f的Fourier级数收敛为收敛于 f f f的二次平均意义下。
X ( t ) = ∑ k = − ∞ + ∞ a k e j k w 0 t X(t)=\sum_{k=-\infty}^{+\infty}a_ke^{jkw_0t} X(t)=k=+akejkw0t
这里重新定义量‘=’的含义,这里的‘=’指左右均方误差相等

Fourier变换

f ( t ) f(t) f(t)在全实轴IR上是以 2 π 2\pi 2π为周期的函数, f ( t + 2 π ) = f ( t ) f(t+2\pi)=f(t) f(t+2π)=f(t),且在 ( 0 , 2 π ) (0,2\pi) (0,2π)上平方可积,其中, ∣ f ( t ) ∣ 2 = f ( t ) f ( t ) ‾ |f(t)|^2=f(t)\overline{f(t)} f(t)2=f(t)f(t)
在全实轴上以 2 π 2\pi 2π为周期且在 ( 0 , 2 π ) (0,2\pi) (0,2π)上平方可积函数全体组成的空间记为 L 2 ( 0 , 2 π ) L^2(0,2\pi) L2(0,2π)
在空间 L 2 ( 0 , 2 π ) L^2(0,2\pi) L2(0,2π)上平方可积函数全体组成的空间记为 L 2 ( 0 , 2 π ) L^2(0,2\pi) L2(0,2π)
在空间 L 2 ( 0 , 2 π ) L^2(0,2\pi) L2(0,2π)中,定义内积
< f , g > ∗ = ∫ 0 2 π f ( t ) g ( t ) ‾ d t <f,g>^*=\int_{0}^{2\pi}f(t)\overline{g(t)}dt <f,g>=02πf(t)g(t)dt
这里,上划一线是求共轭的意思
至于在复数域时为什么要对一个函数求共轭,举个简单的例子说明:
当我们求复数x=a+bi的二范数时,也是要求共轭的, ∣ ∣ x ∣ ∣ 2 = x x ‾ = ( a + b i ) ( a − b i ) = a 2 + b 2 ||x||_2=x \overline{x}=(a+bi)(a-bi)=a^2+b^2 x2=xx=(a+bi)(abi)=a2+b2
干脆直接理解为两个复函数相同位置上的乘积(以2范数形式的乘积)的求和,我感觉也行吧。
对于 f ( t ) ∈ L 2 ( 0 , 2 π ) f(t)\in L^2(0,2\pi) f(t)L2(0,2π) f ( t ) f(t) f(t)的Fourier级数为:
f ( t ) = ∑ k = − ∞ ∞ c k e i k t f(t)=\sum_{k=-\infty}^{\infty}c_ke^{ikt} f(t)=k=ckeikt
φ k ( t ) = e i k t , k = − M , . . . 0 , . . . , N \varphi_k(t)=e^{ikt}, k=-M,...0,...,N φk(t)=eikt,k=M,...0,...,N
{ φ k ( t ) } \{\varphi_k(t)\} {φk(t)}在空间 L 2 ( 0 , 2 π ) L^2(0,2\pi) L2(0,2π)的内积下是两两正交的。
使用 φ k ( t ) \varphi_k(t) φk(t)作为基函数对 f ( t ) f(t) f(t)进行在空间 L 2 ( 0 , 2 π ) L^2(0,2\pi) L2(0,2π)中的最佳平方逼近。
S ( t ) = ∑ k = − M N c k e i k t S(t)=\sum_{k=-M}^{N}c_ke^{ikt} S(t)=k=MNckeikt
其中:
c k = < f , φ k > ∗ < φ k , φ k > ∗ = 1 2 π ∫ 0 2 π f ( t ) e − i k t d t c_k=\dfrac{<f,\varphi_k>^*}{<\varphi_k,\varphi_k>^*}=\dfrac{1}{2\pi}\int_0^{2\pi}f(t)e^{-ikt}dt ck=<φk,φk><f,φk>=2π102πf(t)eiktdt
容易证明:
如果是在空间 L 2 ( 0 , 2 π ) L^2(0,2\pi) L2(0,2π),则 S ( t ) S(t) S(t)平方收敛于 f ( t ) f(t) f(t),即
l i m M , N → ∞ ∣ ∣ f ( t ) − S ( t ) ∣ ∣ t ∈ 0 − 2 π = 0 lim_{M,N\to\infty}||f(t)-S(t)||_{t\in0-2\pi}=0 limM,Nf(t)S(t)t02π=0
这里证明一下 < φ i , φ j > <\varphi_i,\varphi_j> <φi,φj>只有在 i = = j i==j i==j的时候才不为0:
∫ 0 2 π e i k t e − i k t d t = ∫ 0 2 π e 0 d t = ∫ 0 2 π 1 d t = 2 π \int_0^{2\pi}e^{ikt}e^{-ikt}dt=\int_0^{2\pi}e^0dt=\int_0^{2\pi}1dt=2\pi 02πeikteiktdt=02πe0dt=02π1dt=2π
其他情况下积分都是0。
为了方便定义,我们把 1 2 π \dfrac{1}{2\pi} 2π1去掉,定义傅立叶变换为:
f ^ ( w ) = F { f ( t ) } = ∫ − π π e − i w t f ( t ) d t \hat{f}(w)=F\{f(t)\}=\int_{-\pi}^{\pi}e^{-iwt}f(t)dt f^(w)=F{f(t)}=ππeiwtf(t)dt
当傅立叶级数 c k = < f , φ k > ∗ < φ k , φ k > ∗ = 1 2 π ∫ 0 2 π f ( t ) e − i k t d t c_k=\dfrac{<f,\varphi_k>^*}{<\varphi_k,\varphi_k>^*}=\dfrac{1}{2\pi}\int_0^{2\pi}f(t)e^{-ikt}dt ck=<φk,φk><f,φk>=2π102πf(t)eiktdt满足Bessel不等式时,
∑ k = − ∞ ∞ ∣ c k ∣ 2 < = ∣ ∣ f ∣ ∣ ( 0 , 2 π ) 2 \sum_{k=-\infty}^{\infty}|c_k|^2<=||f||_{(0,2\pi)}^2 k=ck2<=f(0,2π)2
定义逆傅立叶变换:
F − 1 ( f ^ ( w ) ) = 1 2 π ∫ − π π e i w t f ^ ( w ) d w F^{-1}(\hat{f}(w))=\dfrac{1}{2\pi}\int_{-\pi}^{\pi}e^{iwt}\hat{f}(w)dw F1(f^(w))=2π1ππeiwtf^(w)dw
这里,为了令逆傅立叶变换能还原原信号,所以把 1 2 π \dfrac{1}{2\pi} 2π1加在这里了,当然,如果要保证能还原原信号还有其他条件,这里就不展开说明了。
介绍几个傅立叶变换有用的性质:
1、如果 f f f的导数还存在,并且属于 L 1 ( I R ) L^1(IR) L1(IR),那么
f ^ ′ ( w ) = i w f ^ ( w ) \hat{f}^{'}(w)=iw\hat{f}(w) f^(w)=iwf^(w)
f ^ n ( w ) = ( i w ) n f ^ ( w ) \hat{f}^{n}(w)=(iw)^n\hat{f}(w) f^n(w)=(iw)nf^(w)
因为前面的 w w w相当于加权,所以,相当于高频信号占比增加。
2、定义 ∗ * 为卷积,时域相卷等于频域相乘
F { f ( t ) ∗ g ( t ) } = f ^ ( w ) g ^ ( w ) F\{f(t)*g(t)\}=\hat{f}(w)\hat{g}(w) F{f(t)g(t)}=f^(w)g^(w)
3、时域移动等于频域移相
F { f ( t − t 0 ) } = e j w t 0 f ^ ( w ) F\{f(t-t_0)\}=e^{jwt_0}\hat{f}(w) F{f(tt0)}=ejwt0f^(w)
有的时候,时移信号的时移量可以放在频域来分析,因为在频域通过FFT快速计算,更快地算出时移量。
4、Parseval恒等式:
对于所有 f , g ∈ L 2 ( I R ) f,g\in L^2(IR) f,gL2(IR),下述关系成立
< f , g > = 1 2 π < f ^ , g ^ > <f,g>=\dfrac{1}{2\pi}<\hat{f},\hat{g}> <f,g>=2π1<f^,g^>
特别地, ∣ ∣ f ∣ ∣ 2 = ( 2 π ) − 1 2 ∣ ∣ f ^ ∣ ∣ 2 ||f||_2=(2\pi)^{-\frac{1}{2}} ||\hat{f}||_2 f2=(2π)21f^2
这个Parseval恒等式应该怎么理解呢?其实它的本质就是正交变换不改变向量长度。
傅立叶变换本身就可以理解为一个正交变换:
举个例子:
信号在时域上的表示可以看作是在一组时域正交基上的表示:
时域上的正交基是:
1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0........ ( 第 一 个 时 刻 为 1 , 其 余 时 刻 为 0 ) 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0........(第一个时刻为1,其余时刻为0) 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0........(10)
0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0........ ( 第 二 个 时 刻 为 1 , 其 余 时 刻 为 0 ) 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0........(第二个时刻为1,其余时刻为0) 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0........(10)
0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0........ ( 第 三 个 时 刻 为 1 , 其 余 时 刻 为 0 ) 0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0........(第三个时刻为1,其余时刻为0) 0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0........(10)
0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0........ ( 第 四 个 时 刻 为 1 , 其 余 时 刻 为 0 ) 0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0........(第四个时刻为1,其余时刻为0) 0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0........(10)
0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0........ ( 第 五 个 时 刻 为 1 , 其 余 时 刻 为 0 ) 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0........(第五个时刻为1,其余时刻为0) 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0........(10)
它不仅是正交的,还是单位正交的。
信号在频域上的表示可以看作是在在一组频域正交基上的表示:
频域上的正交基是:
e i w 0 e^{iw_0} eiw0
e 2 i w 0 e^{2iw_0} e2iw0
e 3 i w 0 e^{3iw_0} e3iw0
e 4 i w 0 e^{4iw_0} e4iw0
e 5 i w 0 e^{5iw_0} e5iw0
不过,虽然是正交的,但是 e i w e^{iw} eiw ( 0 , 2 π ) (0,2\pi) (0,2π)上的积分结果为 2 π 2\pi 2π,所以,才有了Parseval恒等式中的系数 1 2 π \dfrac{1}{2\pi} 2π1
5、线性
F { f 1 ( t ) } = F 1 ( w ) F\{f_1(t)\}=F_1(w) F{f1(t)}=F1(w)
F { f 2 ( t ) } = F 2 ( w ) F\{f_2(t)\}=F_2(w) F{f2(t)}=F2(w)
F { a 1 f 1 ( t ) + a 2 f 2 ( t ) } = a 1 F ( w ) + a 2 F 2 ( w ) F\{a_1f_1(t)+a_2f_2(t)\}=a_1F(w)+a_2F_2(w) F{a1f1(t)+a2f2(t)}=a1F(w)+a2F2(w)
6、奇偶实虚性
简单来说,这个性质就是由这么几个公式拓展而来
F { f ( t ) } = ∫ − ∞ ∞ f ( t ) e − i w t d t = F ( w ) F\{f(t)\}=\int_{-\infty}^{\infty}f(t)e^{-iwt}dt=F(w) F{f(t)}=f(t)eiwtdt=F(w)
F { f ( − t ) } = ∫ − ∞ ∞ f ( − t ) e − i w t d t = t = − t ′ ∫ ∞ − ∞ f ( t ′ ) e i w t ′ − d t ′ = ∫ − ∞ ∞ f ( t ′ ) e i w t ′ d t ′ = F ( − w ) F\{f(-t)\}=\int_{-\infty}^{\infty}f(-t)e^{-iwt}dt=^{t=-t'}\int_{\infty}^{-\infty}f(t')e^{iwt'}-dt'=\int_{-\infty}^{\infty}f(t')e^{iwt'}dt'=F(-w) F{f(t)}=f(t)eiwtdt=t=tf(t)eiwtdt=f(t)eiwtdt=F(w)
F { f ( t ) ‾ } = ∫ − ∞ ∞ f ( t ) ‾ e − i w t d t = ∫ − ∞ ∞ f ( t ) e i w t ‾ d t = F ( − w ) ‾ F\{\overline{f(t)}\}=\int_{-\infty}^{\infty}\overline{f(t)}e^{-iwt}dt=\int_{-\infty}^{\infty}\overline{f(t)e^{iwt}}dt=\overline{F(-w)} F{f(t)}=f(t)eiwtdt=f(t)eiwtdt=F(w)
f ( t ) f(t) f(t)为实偶函数时,其频谱也是实偶函数。
f ( t ) f(t) f(t)为实奇函数时,其频谱是虚奇函数。
f ( t ) f(t) f(t)为虚奇函数时,其频谱是实奇函数。
f ( t ) f(t) f(t)为虚偶函数时,其频谱也是虚偶函数。
7、对称性
傅立叶正变换和反变换之间存在着对称关系,称为傅立叶变换的对称性质
F { f ( t ) } = F ( w ) F\{f(t)\}=F(w) F{f(t)}=F(w)
F { F ( t ) } = 2 π f ( − w ) F\{F(t)\}=2\pi f(-w) F{F(t)}=2πf(w)
8、尺度变换
F { f ( a t ) } = 1 ∣ a ∣ F ( w a ) F\{f(at)\}=\dfrac{1}{|a|}F(\dfrac{w}{a}) F{f(at)}=a1F(aw)
上式表示:若信号 f ( t ) f(t) f(t)在时域上压缩到原来的 1 a \frac{1}{a} a1倍,则其频谱在频域上以0hz为中心展宽 a a a倍,同时其幅度减小到原来的 1 a \frac{1}{a} a1
举例解释:看视频快放时,其放音速度比原音频播放速度要高,这就相当于信号在时间上受到压缩。于是其频谱就扩展,即频率变高了。
另一个例子解释:信号的等效脉宽与等效频宽成反比。如果通过压缩信号的持续时间来提高通信速度,则必然使信号的频带展宽。因而通信技术中,通信速度与占有频带是一种矛盾的关系。
9、频移特性
若信号 f ( t ) f(t) f(t)的频谱为 F ( w ) F(w) F(w), 将 f ( t ) f(t) f(t)乘以因子 e j w 0 t e^{jw_0t} ejw0t,则 f ( t ) e i w 0 t f(t)e^{iw_0t} f(t)eiw0t的频谱为
F { f ( t ) e i w 0 t } = ∫ − ∞ ∞ f ( t ) e i w 0 t e − i w t d t = ∫ − ∞ ∞ f ( t ) e − i ( w − w 0 ) t d t = F ( w − w 0 ) F\{f(t)e^{iw_0t}\}=\int_{-\infty}^{\infty}f(t)e^{iw_0t}e^{-iwt}dt=\int_{-\infty}^{\infty}f(t)e^{-i(w-w_0)t}dt=F(w-w_0) F{f(t)eiw0t}=f(t)eiw0teiwtdt=f(t)ei(ww0)tdt=F(ww0)
由左加右减知,相当于将 F ( w ) F(w) F(w)向右平移 w 0 w_0 w0

Haar族

Haar提出定义于 [ 0 , 1 ] [0,1] [0,1]上函数另外的正交族 h n ( x ) {h_n(x)} hn(x),使对任一 [ 0 , 1 ] [0,1] [0,1]上连续函数,级数 ∑ i = 0 ∞ < f , h i > h i ( x ) \sum_{i=0}^{\infty}<f,h_i>h_i(x) i=0<f,hi>hi(x) [ 0 , 1 ] [0,1] [0,1]上一致收敛于 f ( x ) f(x) f(x),这里 < u , v > = ∫ 0 1 u ( x ) v ( x ) d x <u,v>=\int_{0}^{1}u(x)v(x)dx <u,v>=01u(x)v(x)dx
从逼近论的角度来看,haar小波并不比用阶梯函数对连续函数的古典逼近好多。但这导致量后续小波的产生。

正文开始

时-频域的稀疏表示:

传统频域分析的局限性:没有信号的先后信息,没有时间定位信息
常用时频分析方法:

短时傅立叶变换(STFT):获得信号在时间和频率构成的时频平面上的稀疏表示:

如果做 f f f的一个好的定位切片 f ( t ) w ( t − b ) ‾ f(t)\overline{w(t-b)} f(t)w(tb)之后,再取它的Fourier变换
W { f ( t ) } = ∫ − ∞ ∞ e − i w t f ( t ) w ( t − b ) ‾ d t W\{f(t)\}=\int_{-\infty}^{\infty}e^{-iwt}f(t)\overline{w(t-b)}dt W{f(t)}=eiwtf(t)w(tb)dt,这称为窗口Fourier变换,它是时间-频率局部化的一种标准技术。
如果取 w ( t ) = g a ( t ) w(t)=g_a(t) w(t)=ga(t),即取Gauss函数作为窗函数,则窗口Fourier变换式变成Gabor变换

Gabor变换

G b { f ( t ) } = ∫ − ∞ ∞ f ( t ) g a ( t − b ) e − i w t d t G_b\{f(t)\}=\int_{-\infty}^{\infty}f(t)g_a(t-b)e^{-iwt}dt Gb{f(t)}=f(t)ga(tb)eiwtdt
又因为:
∫ − ∞ ∞ g a ( t − b ) d b = ∫ − ∞ ∞ g a ( x ) d x = 1 \int_{-\infty}^{\infty}g_a(t-b)db=\int_{-\infty}^{\infty}g_a(x)dx=1 ga(tb)db=ga(x)dx=1
所以:
∫ − ∞ ∞ G b { f ( t ) } d b = F { f ( t ) } \int_{-\infty}^{\infty}G_b\{f(t)\}db=F\{f(t)\} Gb{f(t)}db=F{f(t)}
也就是说, f f f的Gabor变换的集合 G b { f ( t ) } G_b\{f(t)\} Gb{f(t)}精确分解 f f f的Fourier变换 f ^ \hat{f} f^,以便于给出它的局部谱信息。
对Gabor变换分析它的时频特性时,要注意,Gabor变换的一个基是:
g a ( t − b ) e i w 0 t g_a(t-b)e^{iw_0t} ga(tb)eiw0t
所以Gabor变换的形状不是高斯函数的钟型,而是震荡形的。
在这里插入图片描述
其中b是指的时间上的定位信息, w 0 w_0 w0指的是频域上的一个定位信息。
通过修改 w 0 w_0 w0 w 0 , 2 w 0 , 3 w 0 , 4 w 0 , 5 w 0 , 6 w 0 , . . . w_0,2w_0,3w_0,4w_0,5w_0,6w_0,... w0,2w0,3w0,4w0,5w0,6w0,...等离散频率点,相当于离散傅立叶变换。
通过修改时间定位信息 b b b,可以得到不同时间点的信号的分析。
Gauss函数族:
g a ( x ) = 1 2 π a e − x 2 4 a g_a(x)=\dfrac{1}{2\sqrt{\pi a}}e^{-\frac{x^2}{4a}} ga(x)=2πa 1e4ax2
g a ^ ( w ) = e − a w 2 \hat{g_a}(w)=e^{-aw^2} ga^(w)=eaw2
这里涉及到高斯函数的傅立叶变换以及高斯函数的积分问题,详细过程就不推导了。可以看到,当修改 a a a的数值时,将会导致 g a ( x ) , g a ^ ( w ) g_a(x),\hat{g_a}(w) ga(x)ga^(w)一个变胖,一个变瘦,所以如果时域窗比较窄(时域的分辨率比较高),那么频域窗就会比较宽(频域的分辨率比较低)。
两个信号时域相乘后傅立叶变换等于分别傅立叶变换之后在频域相卷,所以,相当于:
G b { f ( t ) } ( w 0 ) = ∫ − ∞ ∞ f ( t ) g a ( t − b ) e − i w 0 t d t = f ^ ( w ) ∗ g a ^ ( w − w 0 ) = ∫ − ∞ ∞ f ^ ( w ) g a ^ ( w − w 0 ) d w G_b\{f(t)\}(w_0)=\int_{-\infty}^{\infty}f(t)g_a(t-b)e^{-iw_0t}dt=\hat{f}(w)*\hat{g_a}(w-w_0)=\int_{-\infty}^{\infty}\hat{f}(w)\hat{g_a}(w-w_0)dw Gb{f(t)}(w0)=f(t)ga(tb)eiw0tdt=f^(w)ga^(ww0)=f^(w)ga^(ww0)dw
因为卷积窗 g a ^ ( w − w 0 ) \hat{g_a}(w-w_0) ga^(ww0)有一定宽度,所以它相当于是一定频率范围内的系数的加权和,所以它的频率分辨率是有限的,当频率分布密集的时候,就会混在一起。
由此,引入小波变换。

小波变换

小波基中就不再有 e i w t e^{iwt} eiwt这一项了,虽然小波基仍然是波动的,所以,分析小波变换的时候就不使用傅立叶变换的相关知识来分析了。
短时傅立叶变换可以看作是在不同时间点和频率点上对信号的分析。
小波变换则是看作在不同时间点和尺度点上对信号的分析,尺度和频率有一定的关系,实际生活中,低频的信号一般持续时间长,所以适合用尺度比较大的长窗,高频的信号一般持续时间短,所以适合用尺度比较小的短窗。但如果所测量的信号并不符合这个特点,用小波的效果往往不如短时傅立叶变换好。
小波变换与傅立叶变换的对比:
连续小波变化 → \to 傅立叶变换
连续小波变换:
W f ( u , s ) = 1 ∣ s ∣ ∫ − ∞ ∞ W_f(u,s)=\dfrac{1}{\sqrt{|s|}}\int_{-\infty}^{\infty} Wf(u,s)=s 1
小波框架 → \to 傅立叶级数
正交小波变化 → \to 正交的傅立叶级数
小波变换的快速算法Mallat → \to 快速傅立叶变换
小波基 → \to 傅立叶基
小波基:
ϕ u , s ( t ) = 1 s ϕ ( t − u s ) \phi_{u,s}(t)=\dfrac{1}{\sqrt{s}}\phi(\dfrac{t-u}{s}) ϕu,s(t)=s 1ϕ(stu)
小波基中不同的时间参数 u → u\to u短时傅立叶变化中不同的时间点
小波基中不同的尺度参数 s → s\to s短时傅立叶变换中不同的频率点

离散小波变换——Mallat算法分析

这里,介绍一下,在Matlab中是如何得到小波变换矩阵的。
离散小波变换(Discrete Wavelet Transform,DWT)是基于Mallat算法实现的,针对离散的时间信号,DWT是指将连续小波变换中的尺度参数s和时移参数u离散化。
Mallet算法框图:

H1
L1
H2
L2
H3
L3
信号x
Highpass
下采样,信号长度除以2
D1
Lowpass
下采样,信号长度除以2
A1
Highpass
下采样,信号长度除以2
D2
Lowpass
下采样,信号长度除以2
A2
Highpass
下采样,信号长度除以2
D3
Lowpass
下采样,信号长度除以2
A3

Highpass和Lowpass就相当于时域上使用滤波器对信号进行卷积。
下采样指每隔2个点采样1个点。
假设Highpass为 h ( M − 1 ) , h ( M − 2 ) , h ( M − 3 ) , . . . , h ( 2 ) , h ( 1 ) , h ( 0 ) h(M-1),h(M-2),h(M-3),...,h(2),h(1),h(0) h(M1),h(M2),h(M3),...,h(2),h(1),h(0),长度为M。
信号x为 x ( N − 1 ) , x ( N − 2 ) , x ( N − 3 ) , . . . , x ( 2 ) , x ( 1 ) , x ( 0 ) x(N-1),x(N-2),x(N-3),...,x(2),x(1),x(0) x(N1),x(N2),x(N3),...,x(2),x(1),x(0),长度为N。
所以用Highpass对信号x卷积等于:
[ y 0 y 1 y 2 . . . y n ] = [ h ( M 2 ) h ( M 2 − 1 ) . . . h ( 0 ) 0 0 . . . 0 h ( M 2 + 1 ) h ( M 2 ) . . . h ( 1 ) h ( 0 ) 0 . . . 0 h ( M 2 + 2 ) h ( M 2 + 1 ) . . . h ( 2 ) h ( 1 ) h ( 0 ) . . . 0 . . 0 0 . . . h ( M − 1 ) h ( M − 2 ) h ( M − 3 ) . . . h ( M 2 ) ] [ x 0 x 1 x 2 . . . x n ] \begin{bmatrix}y_0\\y_1\\y_2\\.\\.\\.\\y_n\end{bmatrix}=\begin{bmatrix}h(\dfrac{M}{2})&h(\dfrac{M}{2}-1)&...&h(0)&0&0&...&0\\h(\dfrac{M}{2}+1)&h(\dfrac{M}{2})&...&h(1)&h(0)&0&...&0\\h(\dfrac{M}{2}+2)&h(\dfrac{M}{2}+1)&...&h(2)&h(1)&h(0)&...&0\\.\\.\\0&0&...&h(M-1)&h(M-2)&h(M-3)&...&h(\dfrac{M}{2})\end{bmatrix}\begin{bmatrix}x_0\\x_1\\x_2\\.\\.\\.\\x_n\end{bmatrix} y0y1y2...yn=h(2M)h(2M+1)h(2M+2)..0h(2M1)h(2M)h(2M+1)0............h(0)h(1)h(2)h(M1)0h(0)h(1)h(M2)00h(0)h(M3)............000h(2M)x0x1x2...xn
这个就是卷积的过程,滤波器中间 h ( M 2 ) h(\dfrac{M}{2}) h(2M)对应的x的位置就是y输出的位置。
下采样就是仅仅保留上面的Highpass矩阵中的偶数行,得到的就是下采样后的输出y,下采样后输出y的长度仅仅为原信号x的一半。

Y N 2 × 1 = H N 2 × N X N × 1 Y_{\frac{N}{2}\times1}=H_{\frac{N}{2}\times N}X_{N\times1} Y2N×1=H2N×NXN×1
根据Lowpass构造对应的 L N 2 × N L_{\frac{N}{2}\times N} L2N×N,将 H N 2 × N H_{\frac{N}{2}\times N} H2N×N L N 2 × N L_{\frac{N}{2}\times N} L2N×N组合成 W N × N = [ H N 2 × N L N 2 × N ] W_{N\times N}=\begin{bmatrix}H_{\frac{N}{2}\times N}\\L_{\frac{N}{2}\times N}\end{bmatrix} WN×N=[H2N×NL2N×N],即为我们寻找的小波变换矩阵,不过这只是一个尺度上的,为了实现多尺度(多层)分解,需要用矩阵的连乘。
第一层分解表示为:
[ [ A 1 ] N 2 × 1 [ D 1 ] N 2 × 1 ] = [ H N 2 × N L N 2 × N ] X N × 1 = [ W 1 ] N × N [ X ] N × 1 \begin{bmatrix}[A_1]_{\frac{N}{2}\times1}\\ [D_1]_{\frac{N}{2}\times1} \end{bmatrix}=\begin{bmatrix}H_{\frac{N}{2}\times N}\\L_{\frac{N}{2}\times N}\end{bmatrix}X_{N\times1}=[W_1]_{N\times N}[X]_{N\times1} [[A1]2N×1[D1]2N×1]=[H2N×NL2N×N]XN×1=[W1]N×N[X]N×1
第二层分解是由 A 1 A_1 A1得到 D 2 D_2 D2 A 2 A_2 A2的过程,如下:
[ [ A 2 ] N 4 × 1 [ D 2 ] N 4 × 1 ] = [ H N 4 × N 2 L N 4 × N 2 ] [ A 1 ] N 2 × 1 = [ W 2 ] N 2 × N 2 [ A 1 ] N 2 × 1 \begin{bmatrix}[A_2]_{\frac{N}{4}\times1}\\ [D_2]_{\frac{N}{4}\times1} \end{bmatrix}=\begin{bmatrix}H_{\frac{N}{4}\times \frac{N}{2}}\\L_{\frac{N}{4}\times \frac{N}{2}}\end{bmatrix}[A1]_{\frac{N}{2}\times1}=[W_2]_{\frac{N}{2}\times \frac{N}{2}}[A_1]_{\frac{N}{2}\times1} [[A2]4N×1[D2]4N×1]=[H4N×2NL4N×2N][A1]2N×1=[W2]2N×2N[A1]2N×1
可以把两层分解放在一起可得
[ [ A 2 ] N 4 × 1 [ D 2 ] N 4 × 1 [ D 1 ] N 2 × 1 ] = [ [ W 2 ] N 2 × N 2 [ A 1 ] N 2 × 1 [ D 1 ] N 2 × 1 ] = [ [ W 2 ] N 2 × N 2 0 0 [ I ] N 2 × N 2 ] [ [ A 1 ] N 2 × 1 [ D 1 ] N 2 × 1 ] = [ [ W 2 ] N 2 × N 2 0 0 [ I ] N 2 × N 2 ] [ W 1 ] N × N [ X ] N × 1 \begin{bmatrix}[A_2]_{\frac{N}{4}\times1}\\ [D_2]_{\frac{N}{4}\times1} \\ [D_1]_{\frac{N}{2}\times1}\end{bmatrix}=\begin{bmatrix}[W_2]_{\frac{N}{2}\times \frac{N}{2}}[A_1]_{\frac{N}{2}\times1} \\ [D_1]_{\frac{N}{2}\times1}\end{bmatrix}=\begin{bmatrix}[W_2]_{\frac{N}{2}\times \frac{N}{2}}&0\\0&[I]_{\frac{N}{2}\times\frac{N}{2}}\end{bmatrix}\begin{bmatrix}[A_1]_{\frac{N}{2}\times1}\\ [D_1]_{\frac{N}{2}\times1} \end{bmatrix}=\begin{bmatrix}[W_2]_{\frac{N}{2}\times \frac{N}{2}}&0\\0&[I]_{\frac{N}{2}\times\frac{N}{2}}\end{bmatrix}[W_1]_{N\times N}[X]_{N\times1} [A2]4N×1[D2]4N×1[D1]2N×1=[[W2]2N×2N[A1]2N×1[D1]2N×1]=[[W2]2N×2N00[I]2N×2N][[A1]2N×1[D1]2N×1]=[[W2]2N×2N00[I]2N×2N][W1]N×N[X]N×1
更多的层次可以以此类推。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值