基于TensorFlow的DNN和LSTM实现MNIST手写数字识别

目录

一、MNIST数据集介绍和下载

二、Softmax回归函数介绍

三、基于TensorFlow的DNN实现MNIST手写数字识别

1、简单神经网络实现MNIST手写数字识别

2、深度神经网络实现MNIST手写数字识别

四、LSTM长短期记忆神经网络实现Mnist手写数字识别


一、MNIST数据集介绍和下载

MNIST是一个入门级的计算机视觉数据集,MNIST数据集下载

下载下来的数据集被分成两部分:60000行的训练数据集mnist.train)和10000行的测试数据集mnist.test

二、Softmax回归函数介绍

三、基于TensorFlow的DNN实现MNIST手写数字识别

1、简单神经网络实现MNIST手写数字识别

(1)构建一个只有输入层输出层的简单神经网络模型,使用二次代价函数梯度下降算法进行优化;代码如下:

#TensorFlow实现MNIST手写数字识别-简单版本
import tensorflow as tf
#Tensorflow提供了一个类来处理MNIST数据
from tensorflow.examples.tutorials.mnist import input_data

#载入数据集
mnist=input_data.read_data_sets('MNIST_data',one_hot=True)

#设置每个批次的大小
batch_size=100
#计算一共有多少个批次
n_batch=mnist.train.num_examples//batch_size

#定义两个placeholder
x=tf.placeholder(tf.float32,[None,784])
y=tf.placeholder(tf.float32,[None,10])

#创建一个简单的神经网络(只有输入层和输出层)
Weights=tf.Variable(tf.zeros([784,10]))
biases=tf.Variable(tf.zeros([10]))
prediction=tf.nn.softmax(tf.matmul(x,Weights)+biases)

#定义代价函数(均方差函数)
loss=tf.reduce_mean(tf.square(y-prediction))
#定义反向传播算法(使用梯度下降算法)
train_step=tf.train.GradientDescentOptimizer(0.2).minimize(loss)

#结果存放在一个布尔型列表中(argmax函数返回一维张量中最大的值所在的位置)
correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))

#求准确率(tf.cast将布尔值转换为float型)
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

#创建会话
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer()) #初始化变量
    #训练次数
    for i in range(21):
        for batch in range(n_batch):
            batch_xs,batch_ys=mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})

        acc=sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
        print("Iter"+str(i)+",Testing Accuracy"+str(acc))

结果为:

(2)模型同上,使用交叉熵函数梯度下降算法进行优化

把上面代码的代价函数改为下面的交叉熵代价函数

loss=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)) 

结果为:

2、深度神经网络实现MNIST手写数字识别

构建一个多层的神经网络模型,使用交叉熵函数梯度下降算法进行优化,添加Dropout防止过拟合

模型结构如下:

代码如下:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

#载入数据集
mnist=input_data.read_data_sets('MNIST_data',one_hot=True)

#设置每个批次的大小
batch_size=100
#计算一共有多少个批次
n_batch=mnist.train.num_examples//batch_size

#定义三个placeholder
x=tf.placeholder(tf.float32,[None,784])
y=tf.placeholder(tf.float32,[None,10])
keep_prob=tf.placeholder(tf.float32)  #存放百分率

#创建一个多层神经网络模型
#第一个隐藏层
W1=tf.Variable(tf.truncated_normal([784,2000],stddev=0.1))
b1=tf.Variable(tf.zeros([2000])+0.1)
L1=tf.nn.tanh(tf.matmul(x,W1)+b1)
L1_drop=tf.nn.dropout(L1,keep_prob) #keep_prob设置工作状态神经元的百分率
#第二个隐藏层
W2=tf.Variable(tf.truncated_normal([2000,2000],stddev=0.1))
b2=tf.Variable(tf.zeros([2000])+0.1)
L2=tf.nn.tanh(tf.matmul(L1_drop,W2)+b2)
L2_drop=tf.nn.dropout(L2,keep_prob)
#第三个隐藏层
W3=tf.Variable(tf.truncated_normal([2000,1000],stddev=0.1))
b3=tf.Variable(tf.zeros([1000])+0.1)
L3=tf.nn.tanh(tf.matmul(L2_drop,W3)+b3)
L3_drop=tf.nn.dropout(L3,keep_prob)
#输出层
W4=tf.Variable(tf.truncated_normal([1000,10],stddev=0.1))
b4=tf.Variable(tf.zeros([10])+0.1)
prediction=tf.nn.softmax(tf.matmul(L3_drop,W4)+b4)

#定义交叉熵代价函数
loss=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#定义反向传播算法(使用梯度下降算法)
train_step=tf.train.GradientDescentOptimizer(0.2).minimize(loss)

#结果存放在一个布尔型列表中(argmax函数返回一维张量中最大的值所在的位置)
correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))

#求准确率(tf.cast将布尔值转换为float型)
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

#创建会话
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer()) #初始化变量
    #训练次数
    for i in range(21):
        for batch in range(n_batch):
            batch_xs,batch_ys=mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0})
        #测试数据计算出的准确率
        test_acc=sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
        print("Iter"+str(i)+",Testing Accuracy"+str(test_acc))

结果为:

四、LSTM长短期记忆神经网络实现Mnist手写数字识别

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.contrib import rnn
 
# 载入数据集
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
 
# 输入图片是28*28
n_inputs = 28  # 输入一行,一行有28个数据(28个像素点),即输入序列长度为28
max_time = 28  # 一共28行
lstm_size = 100  # 隐层单元
n_classes = 10  # 10个分类
batch_size = 50  # 每批次50个样本
n_batch = mnist.train.num_examples // batch_size  # 计算一共有多少个批次
 
# 这里的none表示第一个维度可以是任意的长度
x = tf.placeholder(tf.float32, [None, 784])
# 正确的标签
y = tf.placeholder(tf.float32, [None, 10])
 
# 初始化权值
weights = tf.Variable(tf.truncated_normal([lstm_size, n_classes], stddev=0.1))
# 初始化偏置值
biases = tf.Variable(tf.constant(0.1, shape=[n_classes]))
 
 
# 定义RNN网络
def RNN(X, weights, biases):
    inputs = tf.reshape(X, [-1, max_time, n_inputs])
    # 定义LSTM基本CELL
    lstm_cell = rnn.BasicLSTMCell(lstm_size)
    # final_state[0]是cell state
    # final_state[1]是hidden_state
    outputs, final_state = tf.nn.dynamic_rnn(lstm_cell, inputs, dtype=tf.float32)
    results = tf.nn.softmax(tf.matmul(final_state[1], weights) + biases)
    return results
 
# 计算RNN的返回结果
prediction = RNN(x, weights, biases)
# 损失函数
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y))
# 使用AdamOptimizer进行优化
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
# 结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1))  # argmax返回一维张量中最大的值所在的位置
# 求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))  # 把correct_prediction变为float32类型
# 初始化
init = tf.global_variables_initializer()
 
with tf.Session() as sess:
    sess.run(init)
    for epoch in range(21):
        for batch in range(n_batch):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys})
 
        acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
        print("Iter " + str(epoch) + ", Testing Accuracy= " + str(acc))

结果为:

 

补充:

防止过拟合的常用方法

常用优化器

 

 

 

 

 

 

参考资料:MNIST机器学习入门

 

 

©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页