迁移学习基本知识

本文用于了解迁移学习的基本知识!!!

1. 什么是迁移学习?

迁移学习也称为归纳迁移、领域适配,其目标是将某个领域或任务上学习到的知识或模式应用到不同的但相关的领域或问题中。例如学习走路的技能可以用来学习跑步、学习识别轿车的经验可以用来识别卡车等。

2. 迁移学习的主要思想?

从相关的辅助领域中迁移标注数据或知识结构、完成或改进目标领域或任务的学习效果。

3. 迁移学习研究的意义?

在很多工程实践中,为每个应用领域收集标注数据代价十分昂贵、甚至是不可能的,因此从辅助领域或任务中迁移现有的知识结构从而完成或改进目标领域任务是十分必要的、是源于实践需求的重要研究问题。

4. 迁移学习与传统机器学习相比的特点?

迁移学习放宽了传统机器学习训练数据和测试数据服从独立同分布这一假设,从而使得参与学习的领域或任务可以服从不同的边缘概率分布或条件概率分布。

5. 迁移学习与半监督学习的比较?

虽然传统半监督学习可以解决数据稀疏性,但其要求目标领域存在相当程度的标注数据;当标注数据十分稀缺且获取代价太大时,仍然需要从辅助领域迁移知识来提高目标领域的学习效果。

6. 迁移学习问题的描述?

迁移学习设计领域和任务两个重要概念。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值