重磅!《中国人工智能学会推荐国际学术会议和国际/国内期刊目录》正式发布(内附下载地址)

8月24日,2024人工智能产学融合创新论坛在西安成功举办。论坛开幕式上正式发布了《中国人工智能学会推荐国际学术会议和国际/国内期刊目录》(以下简称“目录”)。

图片

图1 目录发布会现场(图片来源于中国人工智能学会官网)

目录发布的重要意义:该目录的正式发布将为指导研究方向、加强学术沟通、推动职业进步方面提供重要的参考。

目录形成和发布的重要历程:2023年6月,中国人工智能学会成立专家组,开展了推荐学术会议/期刊目录的工作。2024年1月,中国人工智能学会发布了《中国人工智能学会推荐国际学术会议和国际/国内期刊目录》初稿,面向人工智能领域专家和学者征求意见,正式启动了学科领域学术会议、期刊分类完善工作。2024年8月,形成了《中国人工智能学会推荐国际学术会议、国际/国内期刊目录》正式版并予以公布。

目录的特点:《目录》分为A类、B类、C类三档。A类通常被认为是该领域内最顶尖的学术会议或刊物,具有极高的学术标准和影响力;B类代表在国际上广泛认可的重要学术会议或刊物,在特定领域或子领域内具有较高的声誉;C类代表国际学术界所认可的重要学术会议或刊物,是学术交流的重要平台。

目录包含的人工智能研究领域:共包含了人工智能的11个细分领域,具体如下。

(1)人工智能基础与综合

(2)人工智能交叉与应用

(3)脑认知与类脑智能

(4)机器学习

(5)模式识别与计算机视觉

(6)语言与语音处理

(7)知识工程与数据挖掘

(8)跨媒体智能与人机交互

(9)智能机器人与系统

(10)智能芯片与计算系统

(11)人工智能伦理、安全与治理

目录的下载地址(请复制到浏览器内打开): https://pan.baidu.com/s/1zlwgNpCUzfLK1H9W7nd-rg?pwd=7x8v或者https://caai.cn/index.php?s=/home/file/download/id/788.html

更多介绍请浏览官方报道:https://caai.cn/index.php?s=/home/article/detail/id/4024.html

### 回答1: Spark 3.0 是一次重磅发布,经过近两年的开发,它在流处理、Python 和 SQL 方面都进行了重大更新。以下是对这些更新的全面解读: 1. 流处理:Spark 3.0 引入了结构化流处理 API 的重大更新,包括新的流式查询引擎和增强的流式数据源 API。这些更新使得 Spark 更加适合处理实时数据流,并提供了更好的容错机制和更高的性能。 2. Python:Spark 3.0 对 Python API 进行了重大更新,包括对 Pandas UDF 的支持和对 Python 3 的全面支持。这些更新使得 Python 用户能够更加方便地使用 Spark,并且能够更好地利用 Python 生态系统中的工具和库。 3. SQL:Spark 3.0 引入了许多 SQL 方面的更新,包括 ANSI SQL 支持、新的优化器和执行引擎、更好的分区管理和更好的数据源 API。这些更新使得 Spark 更加适合处理大规模数据,并提供了更好的性能和可扩展性。 总的来说,Spark 3.0 的更新使得它更加适合处理实时数据流和大规模数据,并提供了更好的性能和可扩展性。同时,它也更加方便 Python 用户使用,并且能够更好地利用 Python 生态系统中的工具和库。 ### 回答2: 近日,Apache Spark 社区正式宣布发布了最新版 Spark 3.0。这是一次重磅的更新,涵盖了流处理、Python 和 SQL 三大方面的内容。下面就让我们来逐一解读这些更新吧。 1. 流处理:Spark 3.0 引入了一项名为 Structured Streaming 的重要功能。它能够以批处理的方式处理流数据,并且保证了完全幂等性(即能够在多次运行时保证相同的输出)。此外,这个版本还增加了更多的连接器,可以方便地从 Kafka、Flume、Twitter 和 HDFS 中读取数据。 2. Python 支持:在 Spark 3.0 中,Python 支持得到了显著的提升。现在,Python 3 官方支持了 PySpark,而且这个版本同时也新增了 Python API 的许多改进。这里,值得一提的是,Python 开发者可以使用 Pandas 和 Pyarrow 来提高数据集和数据帧的操作速度。 3. SQL:Spark 3.0 中 SQL 的更新主要体现在两个方面:一是 SQL 引擎升级至 Apache Arrow,二是 SQL 执行计划优化。这些更新使得 Spark 3.0 的 SQL 引擎能够更快地处理 SQL 查询,并且提高了查询的执行效率。 此外,Spark 3.0 还新增了 Pyspark 的 type hints 和注释支持,提供了更好的代码接口提示;改进了原有的分布式机器学习功能,加入了新的规范、API 和示例;提高了 Kerberos 和 Hadoop 文件系统(HDFS)的兼容性等。 总之,Spark 3.0 的发布,标志着 Apache Spark 在数据处理领域中的核心地位得到了继续的巩固,并且为 Python 和流处理等开源生态提供了一种更加稳定、快速和可靠的解决方案。对于数据工程师和数据科学家们而言,这无疑是一个重要的里程碑。 ### 回答3: Apache Spark是一个快速通用的大数据处理引擎,Python是一种流行的编程语言,SQL是结构化查询语言的缩写,用于管理关系型数据库,这些都是当今最重要的技术学科。最近,Spark推出了Python3_Spark 3.0的重磅发布,这意味着Spark的核心技术已经经过了重大更新,让我们听听它是如何变得更加优秀。 Python3_Spark 3.0更新重大,首先是流式处理。在此版本中,新引入的流处理模块提供了对无限数据流的完全支持,没有大小限制,可以直接应用于大多数Spark数据源和流数据源,可以轻松实现亚秒级响应,并且还包含新的UI各类展示函数,可以轻松监视流式应用程序。 其次是对Python的原生支持。Python在数据处理界面上极受欢迎,PySpark现在在Python3中完全支持,包括与Python新功能的充分配合,如Python3的类型提示(typing),这意味着PySpark代码现在可以像使用Spark的Scala和Java API一样流畅地进行编写;大大提高了数据科学家和机器学习工程师的效率。 最后是SQL支持。Spark已经成为用户基础最广泛的SQL引擎之一之一。最新的Spark 3.0版本通过实现 ANSI SQL 标准来大幅度提高了 SQL 的兼容性和处理性能。Spark 3.0 将包括对 SQL 2016 的完整支持,包括 MATCH_RECOGNIZE和其他高级功能。此外,Spark 3.0 还支持更多的数据类型,并且还具备静态类型分析和优化,可以帮助用户快速有效地查询和处理大规模数据。 总之,Spark Python3_Spark 3.0的发布,在流、Python、SQL等方面提供了全面升级,使得它的核心技术更加完善和先进,有助于增强数据处理效率,实现更好的数据分析应用。对于正在使用Spark的用户来说,这让他们的生活更加容易。 对于Spark未来的发展,它的不断升级和创新发展势头十分强劲,我们期待它的更多惊喜发布
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值