Pytorch搭建循环神经网络(RNN)实现MNIST手写数字识别(1)

27 篇文章 2 订阅
24 篇文章 11 订阅

循环神经网络(Recurrent Neural Network)
让模型充满记忆力,在序列问题自然语言处理等领域取得很大的成功。
RNN目前使用最多的两种变式:LSTM和GRU
以上2种变式都能够很好地解决长时依赖问题。

LSTM:Long Short Term Memory Networks,长的短时记忆网络
它解决的仍是短时记忆问题,只不过这种短时记忆网络比较长,能在一定程度解决长时依赖的问题。
LSTM,是1997年提出的。

GRU:Gated Recurrent Unit的缩写,由Cho2014年提出。
在此,不详述二者的区别,先把它们当做黑盒,我们先会调用,再深入理论学习。

我们搭建RNN来实现MNIST数据集的识别分类
首先需要将图片数据转化为一个序列数据,MNIST手写数字图片大小为28*28,那么可以将每张图片看作长为28的序列,序列中的每个元素的特征维度是28,这样就将图片变成了一个序列。
Python3.6环境

# -*- coding: utf-8 -*-
"""
Created on Sun Jul  7 12:45:39 2019

@author: ZQQ
"""

import torch
from torch import nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
# torch.manual_seed(1)    # reproducible

# Hyper Parameters,定义超参数
EPOCH = 1               # train the training data n times, to save time, we just train 1 epoch
BATCH_SIZE = 64         #批训练的数量
TIME_STEP = 28          # rnn time step / image height  考虑28个时间点,一行信息包括28个像素点,
INPUT_SIZE = 28         # rnn input size / image width  每28步中的一步读取一行信息(一行信息包括28个像素点)
LR = 0.01               # learning rate
DOWNLOAD_MNIST = False  # set to True if haven't download the data

# MNIST数据集下载
train_data = dsets.MNIST(root='./mnist/',
                         train=True,                         # this is training data
                         transform=transforms.ToTensor(),    # Converts a PIL.Image or numpy.ndarray to
                                        # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
                         download=DOWNLOAD_MNIST,            # download it if you don't have it
                        )

test_data = dsets.MNIST(root='./mnist/',
                        train=False,                         # 测试集
                        transform=transforms.ToTensor()
                        )

test_x = test_data.test_data.type(torch.FloatTensor)[:2000]/255.   # shape (2000, 28, 28) value in range(0,1)
test_y = test_data.test_labels.numpy()[:2000]    # covert to numpy array,pick 2000 samples to speed up testing

# plot其中一张手写数字图片
print(train_data.train_data.size())     # 查看训练集数据大小,60000张28*28的图片 (60000, 28, 28)
print(train_data.train_labels.size())   # 查看训练集标签大小,60000个标签 (60000)
plt.imshow(train_data.train_data[0].numpy(), cmap='gray') # plot 训练集第一张图片
plt.title('%i' % train_data.train_labels[0])              # 图片名称,显示真实标签,%i %d十进制整数,有区别,深入请查阅资料
plt.show()                                                # show

# Data Loader for easy mini-batch return in training
train_loader = DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)

# 定义网络模型
class RNN(nn.Module):
    def __init__(self):
        super(RNN, self).__init__()
        self.rnn = nn.LSTM(input_size=INPUT_SIZE,  # if use nn.RNN(), it hardly learns
                           hidden_size=64,         # rnn 隐藏单元
                           num_layers=1,           # rnn 层数
                           batch_first=True,       # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size)
                          )
        self.out = nn.Linear(64, 10)  #10分类

    def forward(self, x):
        # x shape (batch, time_step, input_size)
        # r_out shape (batch, time_step, output_size)
        # h_n shape (n_layers, batch, hidden_size)
        # h_c shape (n_layers, batch, hidden_size)
        r_out, (h_n, h_c) = self.rnn(x, None)   # None represents zero initial hidden state

        # choose r_out at the last time step
        out = self.out(r_out[:, -1, :])
        return out

rnn = RNN() # 调用模型
print(rnn)  # 查看模型结构

optimizer = torch.optim.Adam(rnn.parameters(), lr=LR)   # 选择优化器,optimize all cnn parameters
loss_func = nn.CrossEntropyLoss()                       # 定义损失函数,the target label is not one-hotted

# 训练,测试。training and testing
for epoch in range(EPOCH):
    for step, (b_x, b_y) in enumerate(train_loader):    # gives batch data
        #print(step)  # 1,2,3,4,5,...,
        #print(b_x)   # 图片向量
        #print(b_y)    # 图片对应的标签
        b_x = b_x.view(-1, 28, 28)                      # reshape x to (batch, time_step, input_size)
        # 前向传播
        output = rnn(b_x)                               # rnn output
        loss = loss_func(output, b_y)                   # cross entropy loss
        # 后向传播
        optimizer.zero_grad()                           # clear gradients for this training step
        loss.backward()                                 # backpropagation, compute gradients
        optimizer.step()                                # apply gradients

        if step % 50 == 0:
            test_output = rnn(test_x)                   # (samples, time_step, input_size)
            pred_y = torch.max(test_output, 1)[1].data.numpy()
            accuracy = float((pred_y == test_y).astype(int).sum()) / float(test_y.size)
            print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)

# print 10 predictions from test data
test_output = rnn(test_x[:10].view(-1, 28, 28))
pred_y = torch.max(test_output, 1)[1].data.numpy()
print(pred_y, 'prediction number')
print(test_y[:10], 'real number')

在这里插入图片描述
参考:莫烦pytorch

  • 4
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
好的,首先我们可以使用PyTorch搭建一个基于循环神经网络手写数字识别模型。下面是一个简单的代码示例: ```python import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms # 定义超参数 batch_size = 64 learning_rate = 0.01 epochs = 10 # 加载MNIST数据集 train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor()) # 定义数据加载器 train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # 定义循环神经网络模型 class RNN(nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(RNN, self).__init__() self.hidden_size = hidden_size self.rnn = nn.RNN(input_size, hidden_size, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): h0 = torch.zeros(1, x.size(0), self.hidden_size).to(device) out, _ = self.rnn(x, h0) out = self.fc(out[:, -1, :]) return out # 定义设备 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 实例化模型并移动到设备上 model = RNN(input_size=28, hidden_size=128, num_classes=10).to(device) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 for epoch in range(epochs): for i, (images, labels) in enumerate(train_loader): # 将数据移动到设备上 images = images.reshape(-1, 28, 28).to(device) labels = labels.to(device) # 前向传播 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 每100个批次打印一次训练信息 if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, epochs, i+1, len(train_loader), loss.item())) # 测试模型 model.eval() with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: # 将数据移动到设备上 images = images.reshape(-1, 28, 28).to(device) labels = labels.to(device) # 前向传播 outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total)) ``` 在这个例子中,我们使用了一个单层的循环神经网络RNN),它接受28x28像素的图像作为输入,并输出10个数字类别的概率分布。我们使用了交叉熵损失函数和Adam优化器进行训练,并在测试集上评估了模型的准确率。 希望这个简单的例子能够帮助你理解如何使用PyTorch实现基于循环神经网络手写数字识别模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器不学习我学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值