如何理解一张RGB图片经过卷积神经网络后通道数增加

https://blog.csdn.net/briblue/article/details/83063170

https://blog.csdn.net/cpluss/article/details/81709998

https://www.jianshu.com/p/1ea2949c0056

https://blog.csdn.net/sinat_34328764/article/details/84192303

在这里插入图片描述
2个3×3×3的卷积核(滤波器)在RGB图片上卷积后生成的通道数为2
3个3×3×3的卷积核(滤波器)在RGB图片上卷积后生成的通道数为3
以此类推,通道数不断增加

单通道理解如下:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器不学习我学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值