商店程序:螺纹生成器(ThreadModeler)

本文介绍了Inventor中的螺纹生成器插件ThreadModeler,该插件由Philippe制作,能将螺纹特征转换为真实螺纹形状。用户可通过浏览树选择螺纹特征,程序自动识别内外螺纹并创建详细螺纹形状。插件工作原理是获取特征参数,结合螺距创建扫略特征,并提供了自定义草图模板的功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家知道,Inventor里有螺纹特征,但实际上它只是一张位图。而不是真正的螺纹形状。而在实际设计中,有时需要螺纹的细节形状作为参考。



这个插件就是把螺纹特征转换成真正的螺纹形状。作者是我的同事Philippe。也提供了源代码。下载地址:
http://apps.exchange.autodesk.com/INVNTOR/List/Search?productline=INVNTOR&query=ThreadModeler&facet=&collection=

来看看如何使用:

安装完毕后,打开零件文档,就可以看到【工具】选项卡有个菜单【ThreadModeler】


点击菜单,弹出对话框:




对话框自动进入拾取状态,可选取零件中的螺纹特征。注意,该插件是让用户通过浏览树上的节点选择,而不是直接在屏幕上选择特征。


### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练和强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力和执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值