Mathematica绘制常见曲线

Mathematica绘制常见曲线

才疏学浅,资历欠佳,难免有误,望有心人批评指正。
border="0" width="350" height="100" src="http://music.163.com/outchain/player?type=2&id=412493245&auto=1&height=66">

本文主要用于展示自己使用mathematica绘制的数学上的常见和常用曲线(本来是动图的,只因技术不精,变成静图了)

阿基米德螺线

Manipulate[
 PolarPlot[a t, {t, -2 \[Pi], 2 \[Pi]}, PlotTheme -> "Detailed",
  AxesStyle -> Arrowheads[{0, 0.03}], PlotLabel -> "阿基米德螺线",
  PlotLegends -> None], {a, -1, 1}]

阿基米德螺线

Manipulate[
 PolarPlot[a Sin[3 t], {t, 0, Pi}, PlotTheme -> "Web",
  AxesStyle -> Arrowheads[{0, 0.03}]], {a, -1, 1}]


这里写图片描述
只是觉得好看,并非我所画

PolarPlot[
 Evaluate[Table[
   Abs[Sin[\[Theta] + i]], {i, 0, 2 Pi, 2 Pi/16}]], {\[Theta], 0,
  2 Pi}, PlotStyle -> Thick,
 ColorFunction -> Function[{x, y, t, r}, Hue[r]], Axes -> False,
 RegionFunction -> Function[{x, y, t, r}, r < 0.555],
 ColorFunctionScaling -> False, PlotPoints -> 20, MaxRecursion -> 3]


这里写图片描述

伯努利双纽线

Manipulate[
 ContourPlot[(x^2 + y^2)^2 == 2 a^2 x y, {x, -1, 1}, {y, -1, 1},
  AspectRatio -> Full, PlotTheme -> "Scientific",
  PlotLabel -> "伯努利双纽线", AxesStyle -> Arrowheads[{0, 0.03}]], {a, -1,
  1}]


这里写图片描述

四叶玫瑰线

Manipulate[
 PolarPlot[a Sin[2 t], {t, -2 Pi, 2 Pi}, PlotTheme -> "Detailed",
  AxesStyle -> Arrowheads[{0, 0.03}], AspectRatio -> Full,
  PlotStyle -> {Red, Dashed}, PlotLabel -> "四叶玫瑰线",
  PlotLegends -> Automatic], {a, -1, 1}]


这里写图片描述

Manipulate[
 PolarPlot[a Sin[2 t], {t, -2 Pi, 2 Pi}, PlotTheme -> "Detailed",
  AxesStyle -> Arrowheads[{0, 0.03}], AspectRatio -> Full,
  PlotStyle -> {Purple, Thickness[0.003]}, PlotLabel -> "四叶玫瑰线",
  PlotLegends -> Automatic], {a, -1, 1}]


这里写图片描述

做出图像并求解积分

Plot[1/(1 + x^2), {x, -15, 15}, PlotTheme -> "Detailed",
 PlotRange -> All, PlotRangePadding -> Scaled[.05], Filling -> Axis,
 FillingStyle -> {Opacity[0.7], Pink}]


这里写图片描述

Integrate[1/(1 + x^2), {x, -Infinity, Infinity}]

仅供学习参考与交流

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值