【论文笔记】Deep Stacked Hierarchical Multi-patch Network for Image Deblurring

Zhang, H., Dai, Y., Li, H., & Koniusz, P. (2019). Deep Stacked Hierarchical Multi-patch Network for Image Deblurring. Retrieved from http://arxiv.org/abs/1904.03468

本文提出一个深度堆叠的多尺度补丁网络,用于运动去模糊

思路

目前的多尺度递归去模糊的模型存在两个问题:

  1. 由粗到细的上采样方案计算开销大
  2. 增加模型深度和细化层次并不能提高去模糊的效果
    针对这两个问题,本文提出了一种基于空间金字塔的深堆叠的层级多补丁网络,通过精细到粗糙的分层表示来处理模糊图像。

该网络的优点:

  1. 由于不同层次的输入具有相同的分辨率,我们使用残差类学习,采用较小的滤波器尺寸,提高网络的计算速度
  2. 我们使用一个类似spm的模型,由于该模型有相对较多的可用补丁,因此可以在最细致的级别上使用更多的训练数据
  3. 该网络可以迁移到其他任务,并取得不错的效果。比如图像显著性方面

网络结构

网络结构如下,由4个层堆叠起来行程,每层都有编码器和解码器组成,中间是类似残差网络的结构。网络是从细分的patch逐渐网上计算,对应图上B4->B1这个过程。以B4为例,图片首先被分为不同的patch,输入编码器中,然后将每个patch仅限编码,然后将相邻两个进行连接操作(concatenation),这样就变成了4个patch,再通过解码器解码,的到的结果用 S 4 j S_{4j} S4j来表示。B4得出的结果就可以与叠加(加法操作),叠加之后的结果输入编码器,得到编码的结果,该编码结果与B4编码并连接操作后的特征进行叠加,将叠加后得到的结果每相邻两个patch进行连接操作,得到两个patch的特征…就这样一致迭代下去,最终得到网络预测,即整幅图片。最小化网络预测输出和GT的MSE,更新参数
在这里插入图片描述

编码器和解码器的结构

b是编码器结构,a是解码器结构。编码器由15个conv层和6个残差和6个RELU模块组成的,解码器和编码器的结构是相似的,只不过将两个卷积层被反卷积层替换以生成图像。编码器和解码器的参数量只有3.6M,远远小于其他的网络,所以这个网络的运行速度很快。
在这里插入图片描述

网络运行原理

下面得是一个1-2-4-8结构的网络,1表示 B 1 B_1 B1层的patch数,只有一个;2表示 B 2 B_2 B2层的patch数,为 1 × 2 = 2 1\times2=2 1×2=2个;同理,3,4表示 B 3 B_3 B3 B 4 B_4 B4patch的数量,分别为 2 × 2 = 4 2\times2=4 2×2=4个, 2 × 8 2\times8 2×8个。当然,也可以增加网络的patch数,但实验证明再细化patch并不能提高效果。

首先将网络分级,分为4个级,用 i , i = { 1 , 2 , 3 , 4 } i, i=\{1,2,3,4\} i,i={1,2,3,4}表示。
将初始模糊图像输入表示为 B 1 B_1 B1,  B i j B_{ij} Bij为第 i i i级的第 j j j个patch,如 B 4 B_4 B4中青色的patch可表示为 B 47 B_{47} B47。 其中 F i F_i Fi G i G_i Gi i i i级的编码器和解码器, C i j C_{ij} Cij B i j B_{ij} Bij经过解码器 G i G_i Gi输出, S i j S_{ij} Sij G i G_i Gi的输出patch。

详细步骤

从第4层开始,逐层往上运行。首先将模糊图片 B 1 B_1 B1分成8个不相交的patch,用 B 4 j B_{4j} B4j表示, j { 1 , . . . , 8 } j\{1,...,8\} j{1,...,8}

将输入的每个patch输入进编码器,得到输出结果 C 4 j C_{4j} C4j
在这里插入图片描述
将每两个相邻的pathc进行连接(concatenate)操作,如patch1与patch2,以此类推。最终得到4个patch,用 C 4 j ∗ C^*_{4j} C4j来表示。这么做的目的是为了和第三层进行叠加
在这里插入图片描述
第4层的经过解码器输出的结果用 S 4 j S_{4j} S4j表示,如下
在这里插入图片描述
第3层
首先将第4层的输入和第3层输入的模糊图片叠加(这里输入的模糊图片和第4层连接过后的尺度是一样的),将叠加后得到的特征输入编码器,得到一个输出 F 3 ( B 3 j + S 4 j ) \mathcal{F}_3(B_{3j}+S_{4j}) F3(B3j+S4j),将编码器得到的输出和第4层concatenate操作的特征图相加,如下式,得到第3层特征图
在这里插入图片描述
如此迭代下去,最终和没有patch的图片( B 1 B_1 B1)叠加,得到网络的输出
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
最终得到的网络输出用 S 1 S_1 S1表示
L o s s Loss Loss计算的是 S 1 S_1 S1 G T GT GT的MSE
在这里插入图片描述

设计的两种网络结构

下图上面的一种称为堆叠-DMPHN,下面的一种称为堆叠-VMPHN。这是将单个DMPHN网络按照两种不同的策略堆叠起来,用于提高网络的性能
在这里插入图片描述
堆叠实验的结果
从图中可以看到

  1. 个DMPH网络,stack-DMPHN,Stack-VMPHN网络都取得了同组对比实验中最好的结果, 第3组和第4组实验结果可知
  2. Stack-VMPHN的性能达到最优,PSNR比DMPHN高1.3%
  3. 第2组实验结果可知, 使用更加细分的patch不能提高网络的性能
  4. DMPHN的运算速度是Stack(2)-VMPHN的18倍
  5. Stack(4)-DMPHN 比 DMPHN模型的PSNR高1%
  6. VMPHN比DMPHN高0.7%

在这里插入图片描述
这是在VedioDeblurring数据集和GoPro数据集进行实验, 得到的实验结果如下, 可以看到Stack(4)-DMPHN的性能都是最优的
在这里插入图片描述为了使我们的网络兼容显著性检测任务,将输出通道修改为1进行灰度图像生成,并在VMPHN中禁用第1层输入与输出之间的残差连接。这是与其他方法的对比, 可以看出本文的方法的效果较好。显著性这块没有看过, 把论文结果贴在这
在这里插入图片描述
这个是在MSRA-B运行的结果
在这里插入图片描述

总结

本文提出了多层堆叠的多尺度patch网络用于去除运动模糊, 可以实现实时处理(30fps, 1280*760,GPU)。本文采用了多层级联的方法, 从细粒度的patch到粗粒度patch, 使得网络能够能够提取到图片中更多信息, 通过逐层融合, 提高了网络的性能。通过对网络的叠加, 进一步提高了网络的性能。该网络不仅可以运用到运动去模糊,也可以运用到显著性检测任务上

评价

网络主要有两点贡献: 1. 多层多patch网络模型, 2. 网络模型叠加, 主要贡献点在第一个上, 将下一层输出的特征与上一次输入图片叠加, 将下一层编码后的特征与上一层编码的特征叠加。但是为什么这么做是有效的, 文章中并没有指出。总得来说, 文章是用一个SPM思路来解决运动去模糊问题, 并取得了很好地效果

【作 者】Per Christian Hansen 【出版社】Society for Industrial and Applied Mathematic 【出版日期】October 29, 2006 【ISBN】0898716187 9780898716184 【形态项】9.8 x 6.7 x 0.3 inches 【语 言】English 【价 格】$63.00 Deblurring Images: Matrices, Spectra, and Filtering (Fundamentals of Algorithms 3) (Fundamentals of Algorithms) By Per Christian Hansen Publisher: Society for Industrial and Applied Mathematic Number Of Pages: 130 Publication Date: 2006-10-29 ISBN-10 / ASIN: 0898716187 ISBN-13 / EAN: 9780898716184 Binding: Paperback “The book’s focus on imaging problems is very unique among the competing books on inverse and ill-posed problems. …It gives a nice introduction into the MATLAB world of images and deblurring problems.” — Martin Hanke, Professor, Institut für Mathematik, Johannes-Gutenberg-Universität. When we use a camera, we want the recorded image to be a faithful representation of the scene that we see, but every image is more or less blurry. In image deblurring, the goal is to recover the original, sharp image by using a mathematical model of the blurring process. The key issue is that some information on the lost details is indeed present in the blurred image, but this “hidden” information can be recovered only if we know the details of the blurring process. Deblurring Images: Matrices, Spectra, and Filtering describes the deblurring algorithms and techniques collectively known as spectral filtering methods, in which the singular value decomposition—or a similar decomposition with spectral properties—is used to introduce the necessary regularization or filtering in the reconstructed image. The concise MATLAB® implementations described in the book provide a template of techniques that can be used to restore blurred images from many applications. This book’s treatment of image deblurring is unique in two ways: it includes algorithmic and implementation details; and by keeping the formulations in terms of matrices, vectors, and matrix computations, it makes the material accessible to a wide range of readers. Students and researchers in engineering will gain an understanding of the linear algebra behind filtering methods, while readers in applied mathematics, numerical analysis, and computational science will be exposed to modern techniques to solve realistic large-scale problems in image processing. With a focus on practical and efficient algorithms, Deblurring Images: Matrices, Spectra, and Filtering includes many examples, sample image data, and MATLAB codes that allow readers to experiment with the algorithms. It also incorporates introductory material, such as how to manipulate images within the MATLAB environment, making it a stand-alone text. Pointers to the literature are given for techniques not covered in the book. Audience This book is intended for beginners in the field of image restoration and regularization. Readers should be familiar with basic concepts of linear algebra and matrix computations, including the singular value decomposition and orthogonal transformations. A background in signal processing and a familiarity with regularization methods or with ill-posed problems are not needed. For readers who already have this knowledge, this book gives a new and practical perspective on the use of regularization methods to solve real problems. Preface; How to Get the Software; List of Symbols; Chapter 1: The Image Deblurring Problem; Chapter 2: Manipulating Images in MATLAB; Chapter 3: The Blurring Function; Chapter 4: Structured Matrix Computations; Chapter 5: SVD and Spectral Analysis; Chapter 6: Regularization by Spectral Filtering; Chapter 7: Color Images, Smoothing Norms, and Other Topics; Appendix: MATLAB Functions; Bibliography; Index
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值