GBDT 学习

本文探讨了GBDT(梯度提升决策树)算法,强调了随机森林的作用,解释了特征重复使用的原因,并讨论了学习停止条件、shrinkage步长和过拟合问题。通过分析,揭示了GBDT如何通过随机抽样提高算法性能和鲁棒性。
摘要由CSDN通过智能技术生成

花絮:

最近加班疯掉了,比九九六还要多,不行啊,这个便宜一定要从老板身上占回来。。。。
另外不知道朋友们是怎么学习一个新算法的,不过我一般是直接百度很多关于这个算法的博客来看,你会发现有些地方可能相互补充,有的地方可能互相矛盾(这种情况可不少见),总之当你理解之后想必是会得到兼听则明的真确结果。这么做会不会和那些天天吭paper的朋友比起来略low啊(O(∩_∩)O哈哈~)。

1.0 背景:为什么学(写)GBDT

这么多乱七八糟的“算法”,为什么要学GBDT呢?主要是最近听到这个名词比较多,想了。那么为什么要再写GBDT呢(鉴于各种牛人满天飞,我怎么就好意思献丑了)?着实是看看了网上一些博客后,有很多疑问,后来自己把这些疑问解决了,就想着分享一下,减少大家的学习成本。所以我就不再从头说起了,新朋友可以参拜一下以下文章。

http://blog.csdn.net/w28971023/article/details/8240756

http://www.cnblogs.com/rocketfan/p/4324605.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值