机器学习之集成学习:GBDT

本文详细介绍了GBDT(梯度提升决策树),包括其基本原理、通俗解释、应用实例(如二分类、多分类和回归问题)以及特征选择方法。同时,讨论了GBDT的优缺点,强调其在处理非线性数据和异常值时的高效性,但指出其在处理大规模数据时的并行性不足。
摘要由CSDN通过智能技术生成

目录

一、什么是GBDT

二、GBDT的理解

2.1、GBDT通俗解释 

2.2、GBDT详解

三、GBDT的应用

3.1、二分类问题 

3.2、多分类问题 

3.3、回归问题

四、GBDT如何选择特征

五、GBDT优缺点


一、什么是GBDT

GBDT,Gardient Boosting Decision Tree,梯度提升树,是一种属于boosting思想的迭代决策树。

提升树是采用前向分布算法训练多个弱学习器,而每个弱学习器用CART回归树构建,然后将多个弱学习器采用加法模型结合起来,作为最终的强学习器。GBDT属于boosting模型,所以每个弱分类器之间是有联系的,GBDT的后一个弱分类器训练的是前一个弱分类器损失的梯度,这样每次迭代都向着损失减小的方向,最终得到最优解。

二、GBDT的理解

2.1、GBDT通俗解释 

提升树模型可表示为以决策树为基学习器的加法模型,具体公式为:\large f(x)=f_{M}(x)=\sum_{m=1}^{M}h_{m}(x;\alpha _{m})

其中,\small h_{m}(x;\alpha _{m})表示第m棵决策树,M表示基学习器的数量,\small \alpha _{m}表示第m棵学习器的参数,比如叶子节点个数、树的深度等等。

那么如何求解加法模型呢?这里就要用到前向分布算法了,其实也就是用最直观的迭代求解。 

首先初始化:f_{0}(x)=0

第m

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值