目录
一、什么是GBDT
GBDT,Gardient Boosting Decision Tree,梯度提升树,是一种属于boosting思想的迭代决策树。
提升树是采用前向分布算法训练多个弱学习器,而每个弱学习器用CART回归树构建,然后将多个弱学习器采用加法模型结合起来,作为最终的强学习器。GBDT属于boosting模型,所以每个弱分类器之间是有联系的,GBDT的后一个弱分类器训练的是前一个弱分类器损失的梯度,这样每次迭代都向着损失减小的方向,最终得到最优解。
二、GBDT的理解
2.1、GBDT通俗解释
提升树模型可表示为以决策树为基学习器的加法模型,具体公式为:
其中,表示第m棵决策树,M表示基学习器的数量,表示第m棵学习器的参数,比如叶子节点个数、树的深度等等。
那么如何求解加法模型呢?这里就要用到前向分布算法了,其实也就是用最直观的迭代求解。
首先初始化:
第m