机器学习-绪论

本文概述了机器学习的核心概念,如数据集、特征向量和不同类型的机器学习(监督、无监督)以及泛化能力。讨论了归纳学习中的概念形成和布尔概念学习,并强调了归纳偏好在算法选择中的重要性,以及NoFreeLunchTheorem对算法评价的启示。
摘要由CSDN通过智能技术生成

        机器学习致力于研究如何通过计算的手段、利用经验来改善系统自身的性能。在计算机系统中,“经验”通常以“数据”的形式存在,因此,机器学习所研究的主要内容,是关于在计算机上从数据中产生“模型”的算法,即“学习算法”。

1 基本术语

数据集:下面记录的集合称为一个“数据集”

示例或样本:每条记录是关于一个事件或对象的描述。

属性:反映事件或对象在某方面的表现或性质的事项,例如“色泽”“敲声”等

属性值:属性上的取值,例如“青绿”“乌黑'

属性空间或样本空间:属性张成的空间

特征向量因为每一个样本都可以表示为特征空间中的一点,即为一个坐标向量。所以我们也把一个样本称为一个特征向量

样例:拥有了标记信息的示例

监督学习:分类、回归

无监督学习:聚类

泛化能力:学得模型适用于新样本的能力。

2 假设空间

        归纳学习:有狭义与广义之分,广义的归纳学习大体相当于从样例中学习,而狭义的归纳学习则要求从训练数据中学得概念(concept),因此亦称为“概念学习”或“概念形成”.概念学习技术目前研究、应用都比较少,因为要学得泛化性能好且语义明确的概念实在太困难了,现实常用的技术大多是产生“黑箱”模型.然而,对概念学习有所了解,有助于理解机器学习的一些基础思想.

布尔概念学习:即对“是”、“不是”进行学习。

3 归纳偏好

        机器学习算法在学习过程中对某种类型假设的偏好,称为“归纳偏好”

        对于任意两个学习算法,无论哪个算法更加”聪明“或者更加”笨拙",它们的期望性能竟然相同。这就是”没有免费的午餐“定理(No Free Lunch Theorem,简称NFL定理)

        前提:所有的问题出现的机会相同,所有问题同等重要。但是实际情况并不是这样。很多时候我们只关心自己试图解决的问题,希望为他找到一个解决方案,至于这个解决方案在别的问题,甚至相似问题是是否为好方案,我们并不关心。

        NFL定理最重要的寓意,是让我们清楚的认识到,脱离实际问题,空谈“什么学习算法更好”毫无意义,因为若考虑潜在的问题,则所有的学习算法一样好,要谈算法的相对优劣,必须针对具体的学习问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值