基于ZF破零均衡和维纳滤波均衡误码率MATLAB对比仿真

文章介绍了ZF破零均衡和维纳滤波均衡在无线通信中的应用,用于改善信道失真和干扰。这两种均衡技术通过信道估计和矩阵处理恢复信号,但面临信道估计的挑战、矩阵求逆的复杂性以及训练序列设计的问题。文章提供部分核心程序,并展示了在matlab2022a环境下的运行效果。
摘要由CSDN通过智能技术生成

目录

1.算法理论概述

1.1 ZF破零均衡

1.2 维纳滤波均衡

2.部分核心程序

3.算法运行软件版本

4.算法运行效果图预览

5.算法完整程序工程


1.算法理论概述

     ZF是一种常用的均衡技术,通过计算接收信号与发送信号之间的相关性,实现了信号的抑制干扰和恢复传输效果。维纳滤波是一种统计均衡方法,通过最小均方误差准则估计发送信号。在无线通信系统中,信道引起的失真和干扰会降低接收信号的质量,导致误码率的增加。均衡技术被广泛应用于解决信道引起的失真和干扰问题,提高系统的可靠性和性能。本文将重点研究基于ZF破零均衡和维纳滤波均衡的误码率对比,探讨它们在信道均衡中的优缺点和实现难点。


1.1 ZF破零均衡

        接收到的信号经过ZF破零均衡,该方法通过计算接收信号与发送信号之间的相关性来恢复传输信号。假设接收到的信号为Y,发送信号为X,均衡后的结果为X_hat。常见的ZF破零均衡公式为:
X_hat = inv(H)*Y
其中,H是信道的冲激响应矩阵,通过训练序列或估计方法得到。


1.2 维纳滤波均衡

       维纳滤波是一种统计均衡方法,通过最小均方误差准则估计发送信号。假设接收到的信号为Y,发送信号为X,均衡后的结果为X_hat。常见的维纳滤波均衡公式为:
X_hat = inv(R)*Y
其中,R是信道响应的协方差矩阵,通过训练序列或估计方法得到。
实现难点
3.1 信道估计
      无论是ZF破零均衡还是维纳滤波均衡,都需要准确估计信道的冲激响应或协方差矩阵。在实际应用中,由于噪声、多径效应和频率选择性衰落等因素的影响,信道估计是一个具有挑战性的任务。
3.2 矩阵求逆

       在ZF破零均衡和维纳滤波均衡中,需要对信道响应矩阵或协方差矩阵进行求逆操作。矩阵求逆可能导致数值不稳定性和计算复杂度的增加,因此需要考虑算法的可行性和实现的效率。
3.3 训练序列设计

       在均衡算法中,为了准确估计信道响应或协方差矩阵,需要使用训练序列进行信道估计。训练序列的设计需要考虑均衡性能和传输开销之间的权衡。

2.部分核心程序

    % 产生复杂高斯噪声 V 矩阵并加入 ISI 信道
    noise      = (randn(N*LEN,1)+1i*randn(N*LEN,1));
    %ISI Channel Generation
    t_matrix   = conv(x,Cmat);
    Y          = t_matrix(1:N*LEN)+noise;
    % 应用零消除滤波
    Y_conv     = conv(Y,Wn_ZF); 

    % 最小 A
    QPSK_Set   = [complex(A,A), complex(A,-A), complex(-A,A),complex(-A,-A)];
    for k = 1:N*LEN
        for q = 1:4
            Y_diff        = Y_conv(k) - QPSK_Set(q);
            norm_diff     = norm(Y_diff,2);
            norm_diff2(q) = norm_diff;
        end
        [minvalue , minindx] = min(norm_diff2);
        value(k) = minvalue;
        indx(k)  = minindx; 
        
    end
0022

3.算法运行软件版本

matlab2022a

4.算法运行效果图预览

5.算法完整程序工程

OOOOO

OOO

O

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

简简单单做算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值