基于CNN卷积神经网络和GEI步态能量提取的视频人物步态识别算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 GEI步态能量提取

4.2 CNN卷积神经网络原理

5.算法完整程序工程


1.算法运行效果图预览

(完整程序运行后无水印)

2.算法运行软件版本

matlab2024b/matlab2022a

3.部分核心程序

(完整版代码包含详细中文注释和操作步骤视频)

.........................................................................
%划分数据为训练集合验证集,训练集中每个类别包含1张图像,验证集包含其余图像的标签
numTrainFiles               = 5;%设置每个类别的训练个数
[imdsTrain, imdsValidation] = splitEachLabel(imds, numTrainFiles, 'randomize');
%定义卷积神经网络的基础结构
layers = [
    imageInputLayer([400 120 1]);%注意,400,150为能量图的大小,不能改
    %第1个卷积层
    convolution2dLayer(3, 8, 'Padding', 'same');%第一个卷积层
    batchNormalizationLayer;
    reluLayer;
    maxPooling2dLayer(2, 'Stride', 2);
    %第3个卷积层
    convolution2dLayer(3, 8, 'Padding', 'same');
    batchNormalizationLayer;
    reluLayer;
    maxPooling2dLayer(2, 'Stride', 2);
    
    %第4个卷积层
    convolution2dLayer(3, 8, 'Padding', 'same');
    batchNormalizationLayer;
    reluLayer;
    maxPooling2dLayer(2, 'Stride', 2);
    %全连接层
    fullyConnectedLayer(6);
    fullyConnectedLayer(6);
    %softmax
    softmaxLayer;
    %输出分类结果
    classificationLayer;];

%设置训练参数
options = trainingOptions('sgdm', ...
    'InitialLearnRate', 0.01, ...
    'MaxEpochs', 100, ...
    'Shuffle', 'every-epoch', ...
    'ValidationData', imdsValidation, ...
    'ValidationFrequency', 1, ...
    'Verbose', false, ...
    'Plots', 'training-progress');
rng(1);
%使用训练集训练网络
net         = trainNetwork(imdsTrain, layers, options);

%对验证图像进行分类并计算精度
YPred       = classify(net, imdsValidation);
YValidation = imdsValidation.Labels;

accuracy    = 100*sum(YPred == YValidation) / numel(YValidation)


save Gnet.mat net
05_001m

4.算法理论概述

      人物步态识别作为一种生物特征识别技术,在安防监控、智能门禁等领域具有广泛的应用前景。它通过分析个体行走时的姿态和动作模式来识别身份。卷积神经网络(Convolutional Neural Network, CNN)在图像和视频处理领域展现出强大的特征提取和分类能力,而步态能量图(Gait Energy Image, GEI)是一种有效的步态特征表示方法。

       步态能量图是一种用于表示步态序列的静态图像,它将一个完整步态周期内的所有帧图像进行融合,从而捕捉到步态的整体特征。GEI 可以有效地减少步态序列的时间维度,同时保留重要的步态信息,便于后续的特征提取和分类。

4.1 GEI步态能量提取

      假设一个完整的步态周期包含N帧二值化的步态轮廓图像{I1​,I2​,⋯,IN​},每帧图像的大小为M1​×M2​。计算GEI的步骤如下:

为了消除不同步态周期内帧数的影响,将累加图像S进行归一化处理,得到GEI:

4.2 CNN卷积神经网络原理

       CNN是一种深度神经网络,主要由卷积层、池化层和全连接层组成。卷积层用于提取输入数据的局部特征,池化层用于降低特征图的维度,减少计算量,全连接层用于将提取的特征进行分类。

       CNN的训练过程通常采用反向传播算法和随机梯度下降(SGD)或其变种(如 Adam、Adagrad 等)来更新网络的参数。假设网络的损失函数为L,则参数更新的公式为:

       基于CNN卷积神经网络和GEI步态能量提取的视频人物步态识别算法结合了GEI对步态特征的有效表示和CNN强大的特征提取与分类能力。通过数据采集与预处理、GEI 生成、CNN 模型构建、训练、评估和识别等步骤,可以实现准确的人物步态识别。在实际应用中,可以根据具体需求调整 CNN 网络的架构和超参数,以提高识别的性能。同时,还可以考虑引入更多的数据集和数据增强技术,进一步提升模型的泛化能力。

5.算法完整程序工程

OOOOO

OOO

O

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

简简单单做算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值