Dataguard基本简介及三大保护模式介绍

Oracle Data Guard(DG)是一种经济有效的容灾技术,保护数据库而非主机。DG包括物理和逻辑复制,主库将redo log同步到备库以保持数据一致。备库可作为读取、报表和备份用途。DG提供最大保护、最高可用性和最高性能三种保护模式,以适应不同数据丢失容忍度和性能需求。最大保护模式确保无数据丢失,但可能因网络问题导致主库停机;最高可用性模式允许主库在备库不可用时继续运行;最高性能模式则牺牲部分数据保护以提高性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、容灾复制方案

1、阵列的复制技术(硬件)  磁盘柜和磁盘柜之间  远程不支持

通过在阵列之间进行复制,异地保存数据

对存储设备和网络环境要求比较高。比如 EMC 存储)

2、基于逻辑卷的复制技术(操作系统层面)     不支持灾备

通过LVM的镜像技术来实现。如 IBM AIX 的逻辑卷的复制技术)

3、基于 Oracle 的 redo log 的复制(在数据库应用层)  可提供灾备的复制技术

1) DataGuard

2) GoldenGate

3) Stream

二、什么是DG

1)不同于RAC保护主机,DG保护的是数据库

2)主库(一个)和备库(可以多个),异地容灾

3)物理DG和逻辑

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

运维呀辉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值