背包问题总结

1、0-1背包问题

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。

第 i 件物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

可以建立一个dp[N][V]的二维数组,状态转移方程如何推理?

如果不选第i件物品,则dp[i][j] = dp[i-1][j]
如果选第i件物品,且第i件物品体积能装入背包,即j > vi。如果要装入vi,则上一个体积状态为j - vi,状态转移方程:
dp[i][j] = dp[i - 1][j - vi] + wi (if j > vi)

2、完全背包问题:

有  N  种物品和一个容量是 V 的背包,每种物品都有无限件可用。

第 i 种物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

与0-1背包(每个物品仅有一个)相比,完全背包则表示我这里有很多物品呀,同样的建立状态转移方程:

如果不选第i件物品,则dp[i][j] = dp[i - 1][j]
如果选第i件物品,只选一件:dp[i][j] = dp[i - 1][j - vi] + wi
如果选第i件物品,只选k件:dp[i][j] = dp[i - 1][j - k*vi] + k * wi  (if k = int(j/vi))
总体状态转移方程:
dp[i][j] = max(dp[i - 1][j],dp[i - 1][j - vi] + wi + dp[i - 1][j - 2*vi] + 2wi + ... + dp[i - 1][j - k*vi] + k * wi)
如何优化该方程?我们先求dp[i][j - vi],将j - vi代入上式:
dp[i][j - vi] = max(dp[i - 1][j - vi],dp[i - 1][j - 2*vi] + wi + dp[i - 1][j - 3*vi] + 2wi + ... + dp[i - 1][j - (k + 1)*vi] + k * wi)
对于上述转移方程最后一项来说,dp[i - 1][j - (k + 1)*vi] + k * wi,想把k * vi的物品放入背包为j - vi里面,显然放不进去呀。把dp[i][j - vi]代入总体转移方程中,于是上述总体状态转移方程就变为:
dp[i][j] = max(dp[i - 1][j],dp[i][j - vi] + w)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值